195 research outputs found

    A conformational study of peptides with the general structure Ac-L-Xaa-Pro-D-Xaa-L-Xaa-NH_2: spectroscopic evidence for a peptide with significant β-turn character in water and in dimethyl sulfoxide

    Get PDF
    Several tetrapeptides, Ac-Val-Pro-D-Ser-His-NH_2, in particular, show significant type II β-turn character in water and in dimethyl sulfoxide. Evidence for this turn population is provided by 2D-rotating frame nuclear Overhauser effect (ROESY) spectroscopy, ^1H NMR amide temperature coefficients, and circular dichroism (CD) studies. To further investigate which residues specifically contribute to the integrity of the turn, studies on 10 tetrapeptides, having the general sequence AC-LXaa-Pro-D-Xaa-L-Xaa-NH_2, are described. The results show the effects of sequence variations on the type II β-turn forming propensity of these peptides in solution. Conclusions from these studies indicate that a cooperative effect between a sterically hindered, β-branched amino acid at the (i) position and a small, non-β-branched D-amino acid at the (i+2) position promotes turn formation. Implications for use of these sequences as structural nucleation elements in de novo protein design are discussed

    In vitro production of anti-RBC antibodies and cytokines in chronic lymphocytic leukemia

    Get PDF
    B-chronic lymphocytic leukemia (B-CLL) patients have a high prevalence of autoimmune phenomena, mainly autoimmune hemolytic anemia (AIHA). Immunoregulatory cytokines play a role in the regulation of both autoimmunity and leukemic B-cell growth. Mitogen-stimulated direct antiglobulin test (MS-DAT) is a recently described test able to disclose latent anti-RBC autoimmunity in AIHA. We investigated the prevalence of anti-RBC autoimmunity by MS-DAT and the pattern of cytokine production by PHA-stimulated whole blood cultures from 69 B-CLL patients and 53 controls. Results showed that anti-RBC IgG values in unstimulated, PHA-, PMA-, and PWM-stimulated cultures were significantly higher in B-CLL patients compared with controls. In B-CLL, the prevalence of anti-RBC autoimmunity was 28.9% by MS-DAT, compared with 4.3% by the standard DAT. Production of IFN-gamma, IL-2, IL-13, TNF-alpha, sCD23, and sCD30 was significantly increased in all B-CLL patients compared with controls, whereas there was no difference in IL-4, IL-6, IL-10, and TGF-beta production. Multivariate analysis showed that IL-4 was significantly increased in MS-DAT-positive compared with -negative patients. Patients with autoantibody positivity displayed greater IFN-gamma production than negative patients. These data are in line with the hypothesis that autoimmune phenomena in B-CLL are associated with an imbalance towards a Th-2-like profile. The elevated prevalence of anti-RBC autoimmunity found by MS-DAT suggests that an underestimated latent autoimmunity exists in B-CLL

    Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis

    Get PDF
    Asparagine-linked glycosylation is a complex protein modification conserved among all three domains of life. Herein we report the in vitro analysis of N-linked glycosylation from the methanogenic archaeon Methanococcus voltae. Using a suite of synthetic and semisynthetic substrates, we show that AglK initiates N-linked glycosylation in M. voltae through the formation of α-linked dolichyl monophosphate N-acetylglucosamine, which contrasts with the polyprenyl diphosphate intermediates that feature in both eukaryotes and bacteria. Notably, AglK has high sequence homology to dolichyl phosphate β-glucosyltransferases, including Alg5 in eukaryotes, suggesting a common evolutionary origin. The combined action of the first two enzymes, AglK and AglC, afforded an α-linked dolichyl monophosphate glycan that serves as a competent substrate for the archaeal oligosaccharyl transferase AglB. These studies provide what is to our knowledge the first biochemical evidence revealing that, despite the apparent similarity of the overall pathways, there are actually two general strategies to achieve N-linked glycoproteins across the domains of life.National Institutes of Health (U.S.) (Grant GM039334

    Lesson learned from early and long-term results of 327 cases of coexisting surgical abdominal diseases and aortic aneurysms treated in open and endovascular surgery

    Get PDF
    Patients with abdominal aortic aneurysm (AAA) frequently have other abdominal pathologies of surgical interest (other diseases, OD). Out of 1,375 elective open aortic replacements for AAA, 315 cases with OD were subdivided in Group 1 (82 patients with “clean wound” OD) and Group 2 (233 patients with “clean-contaminated wound” OD). The results of the sub-groups in which OD was treated at the same time as AAA were analysed (1a, 66 cases and 2a, 86 cases) and compared with OD not treated at the same time as AAA (1b, 16 cases and 2b, 147 cases). EVAR was done in 12 patients with a infrarenal AAA and concomitant abdominal disease. In this group post-operative complications occured in two patients (endoleaks) and no sign of endograft infection was developed. Mean follow-up was 36 months. Mortality was 0% in Group 1a, 1b, 2b and 5.8% in Group 2a. In Group 1a there were one haemoperitoneum, one ischaemic colitis and one graft infection. In Group 1b there were 4 nefrectomies for renal carcinoma and three emergency hernia repairs within 18 months from AAA operation. In Group 2a the follow-up was uneventful. In Group 2b there was no acute complication of OD and 57.2% of patients were subsequently operated for OD. In the EVAR group the 30-day and late mortality rates were 0 and 25%, respectively and all deaths were cancer-related. Contemporary correction of OD in open surgery for AAA should be performed in clean wound cases, while clean-contaminated operations can be done only in selected cases. EVAR is a valid alternative technique to open vascular surgery for the concomitant treatment of aortic aneurysms and abdominal pathologies

    A Systematic Survey of Mini-Proteins in Bacteria and Archaea

    Get PDF
    BACKGROUND: Mini-proteins, defined as polypeptides containing no more than 100 amino acids, are ubiquitous in prokaryotes and eukaryotes. They play significant roles in various biological processes, and their regulatory functions gradually attract the attentions of scientists. However, the functions of the majority of mini-proteins are still largely unknown due to the constraints of experimental methods and bioinformatic analysis. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we extracted a total of 180,879 mini-proteins from the annotations of 532 sequenced genomes, including 491 strains of Bacteria and 41 strains of Archaea. The average proportion of mini-proteins among all genomic proteins is approximately 10.99%, but different strains exhibit remarkable fluctuations. These mini-proteins display two notable characteristics. First, the majority are species-specific proteins with an average proportion of 58.79% among six representative phyla. Second, an even larger proportion (70.03% among all strains) is hypothetical proteins. However, a fraction of highly conserved hypothetical proteins potentially play crucial roles in organisms. Among mini-proteins with known functions, it seems that regulatory and metabolic proteins are more abundant than essential structural proteins. Furthermore, domains in mini-proteins seem to have greater distributions in Bacteria than Eukarya. Analysis of the evolutionary progression of these domains reveals that they have diverged to new patterns from a single ancestor. CONCLUSIONS/SIGNIFICANCE: Mini-proteins are ubiquitous in bacterial and archaeal species and play significant roles in various functions. The number of mini-proteins in each genome displays remarkable fluctuation, likely resulting from the differential selective pressures that reflect the respective life-styles of the organisms. The answers to many questions surrounding mini-proteins remain elusive and need to be resolved experimentally

    Pleural Tuberculosis in Patients with Early HIV Infection Is Associated with Increased TNF-Alpha Expression and Necrosis in Granulomas

    Get PDF
    Although granulomas may be an essential host response against persistent antigens, they are also associated with immunopathology. We investigated whether HIV co-infection affects histopathological appearance and cytokine profiles of pleural granulomas in patients with active pleural tuberculosis (TB). Granulomas were investigated in pleural biopsies from HIV positive and negative TB pleuritis patients. Granulomas were characterised as necrotic or non-necrotic, graded histologically and investigated for the mRNA expression of IL-12, IFN-γ, TNF-α and IL-4 by in situ hybridisation. In all TB patients a mixed Th1/Th2 profile was noted. Necrotic granulomas were more evident in HIV positive patients with a clear association between TNF-α and necrosis. This study demonstrates immune dysregulation which may include TNF-α-mediated immunopathology at the site of disease in HIV infected pleural TB patients

    The N-glycome of human embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complex carbohydrate structures, glycans, are essential components of glycoproteins, glycolipids, and proteoglycans. While individual glycan structures including the SSEA and Tra antigens are already used to define undifferentiated human embryonic stem cells (hESC), the whole spectrum of stem cell glycans has remained unknown. We undertook a global study of the asparagine-linked glycoprotein glycans (N-glycans) of hESC and their differentiated progeny using MALDI-TOF mass spectrometric and NMR spectroscopic profiling. Structural analyses were performed by specific glycosidase enzymes and mass spectrometric fragmentation analyses.</p> <p>Results</p> <p>The data demonstrated that hESC have a characteristic N-glycome which consists of both a constant part and a variable part that changes during hESC differentiation. hESC-associated N-glycans were downregulated and new structures emerged in the differentiated cells. Previously mouse embryonic stem cells have been associated with complex fucosylation by use of SSEA-1 antibody. In the present study we found that complex fucosylation was the most characteristic glycosylation feature also in undifferentiated hESC. The most abundant complex fucosylated structures were Le<sup>x </sup>and H type 2 antennae in sialylated complex-type N-glycans.</p> <p>Conclusion</p> <p>The N-glycan phenotype of hESC was shown to reflect their differentiation stage. During differentiation, hESC-associated N-glycan features were replaced by differentiated cell-associated structures. The results indicated that hESC differentiation stage can be determined by direct analysis of the N-glycan profile. These results provide the first overview of the N-glycan profile of hESC and form the basis for future strategies to target stem cell glycans.</p
    corecore