99 research outputs found

    EVALUATION OF THE CONTRIBUTION OF CYTOCHROME P450 3A4 TO HUMAN LIVER MICROSOMAL BUPROPION HYDROXYLATION

    Get PDF
    This paper is available online at http://dmd.aspetjournals.org ABSTRACT: The purpose of this investigation was to evaluate the role of cytochrome P450 (CYP) 3A4 in human liver microsomal bupropion (BUP) hydroxylation. Across the BUP concentration range of 0.075 to 12 mM, cDNA-expressed CYP3A4 demonstrated BUP hydroxylase activity only when incubated with concentrations >4 mM. When assayed at 12 mM BUP, cDNA-expressed CYP3A4 catalyzed BUP hydroxylation at a 30-fold lower rate than cDNA-expressed CYP2B6 (0.2 versus 7 pmol/min/pmol of P450 Bupropion (BUP) 1 is a second-generation antidepressant agent that is also used in the management of smoking cessation. This drug undergoes extensive hepatic metabolism in humans via oxidative and reductive pathways Clinical pharmacokinetic studies have demonstrated 3-to 10-fold interindividual differences in HBUP C max and AUC In a prior in vitro study reported in abstract form, CYP3A4 demonstrated the second highest rate of BUP hydroxylation among a panel of cDNA-expressed P450 isozyme

    Relative Activation of Human Pregnane X Receptor versus Constitutive Androstane Receptor Defines Distinct Classes of CYP2B6 and CYP3A4 Inducers

    Get PDF
    Both the human pregnane X receptor (hPXR) and constitutive androstane receptor (hCAR) are capable of regulating CYP3A4 and CYP2B6 gene expression. However, the majority of currently identified CYP3A4 and CYP2B6 inducers are confirmed activators of hPXR but not hCAR. To compare these receptors with respect to their chemical selectivities, 16 drugs known to induce CYP3A4 and/or CYP2B expression were evaluated for relative activation of hPXR versus hCAR. Because of the high basal but low chemical-induced activation of hCAR in immortalized cells, alternative methods were used to evaluate hCAR activation potential. Thirteen of the 16 compounds were classified as moderate to strong hPXR activators. In contrast, carbamazepine (CMZ), efavirenz (EFV), and nevirapine (NVP) were classified as negligible or weak hPXR activators at concentrations associated with efficacious CYP2B6 reporter or endogenous gene induction in primary human hepatocytes, suggesting potential activation of hCAR. Subsequent experiments demonstrated that these three drugs efficiently induced nuclear accumulation of in vivo-transfected enhanced yellow fluorescent protein-hCAR and significantly increased expression of a CYP2B6 reporter gene when hCAR was expressed in CAR−/− mice. In addition, using a recently identified, chemically responsive splice variant of hCAR (hCAR3), the hCAR activation profiles of the 16 compounds were evaluated. By combining results from the hPXR- and hCAR3-based reporter gene assays, these inducers were classified as hPXR, hCAR, or hPXR/hCAR dual activators. Our results demonstrate that CMZ, EFV, and NVP induce CYP2B6 and CYP3A4 preferentially through hCAR and that hCAR3 represents a sensitive tool for in vitro prediction of chemical-mediated human CAR activation

    Intergenerational Transmission of Glucose Intolerance and Obesity by In Utero Undernutrition in Mice

    Get PDF
    OBJECTIVE—Low birth weight (LBW) is associated with increased risk of obesity, diabetes, and cardiovascular disease during adult life. Moreover, this programmed disease risk can progress to subsequent generations. We previously described a mouse model of LBW, produced by maternal caloric undernutrition (UN) during late gestation. LBW offspring (F1-UN generation) develop progressive obesity and impaired glucose tolerance (IGT) with aging. We aimed to determine whether such metabolic phenotypes can be transmitted to subsequent generations in an experimental model, even in the absence of altered nutrition during the second pregnancy

    Pharmacogenetic & Pharmacokinetic Biomarker for Efavirenz Based ARV and Rifampicin Based Anti-TB Drug Induced Liver Injury in TB-HIV Infected Patients

    Get PDF
    BACKGROUND: Implication of pharmacogenetic variations and efavirenz pharmacokinetics in concomitant efavirenz based antiviral therapy and anti-tubercular drug induced liver injury (DILI) has not been yet studied. We performed a prospective case-control association study to identify the incidence, pharmacogenetic, pharmacokinetic and biochemical predictors for anti-tubercular and antiretroviral drugs induced liver injury (DILI) in HIV and tuberculosis (TB) co-infected patients. METHODS AND FINDINGS: Newly diagnosed treatment naïve TB-HIV co-infected patients (n = 353) were enrolled to receive efavirenz based ART and rifampicin based anti-TB therapy, and assessed clinically and biochemically for DILI up to 56 weeks. Quantification of plasma efavirenz and 8-hydroxyefaviernz levels and genotyping for NAT2, CYP2B6, CYP3A5, ABCB1, UGT2B7 and SLCO1B1 genes were done. The incidence of DILI and identification of predictors was evaluated using survival analysis and the Cox Proportional Hazards Model. The incidence of DILI was 30.0%, or 14.5 per 1000 person-week, and that of severe was 18.4%, or 7.49 per 1000 person-week. A statistically significant association of DILI with being of the female sex (p = 0.001), higher plasma efavirenz level (p = 0.009), efavirenz/8-hydroxyefavirenz ratio (p = 0.036), baseline AST (p = 0.022), ALT (p = 0.014), lower hemoglobin (p = 0.008), and serum albumin (p = 0.007), NAT2 slow-acetylator genotype (p = 0.039) and ABCB1 3435TT genotype (p = 0.001). CONCLUSION: We report high incidence of anti-tubercular and antiretroviral DILI in Ethiopian patients. Between patient variability in systemic efavirenz exposure and pharmacogenetic variations in NAT2, CYP2B6 and ABCB1 genes determines susceptibility to DILI in TB-HIV co-infected patients. Close monitoring of plasma efavirenz level and liver enzymes during early therapy and/or genotyping practice in HIV clinics is recommended for early identification of patients at risk of DILI

    Pathogenic Roles of CD14, Galectin-3, and OX40 during Experimental Cerebral Malaria in Mice

    Get PDF
    An in-depth knowledge of the host molecules and biological pathways that contribute towards the pathogenesis of cerebral malaria would help guide the development of novel prognostics and therapeutics. Genome-wide transcriptional profiling of the brain tissue during experimental cerebral malaria (ECM ) caused by Plasmodium berghei ANKA parasites in mice, a well established surrogate of human cerebral malaria, has been useful in predicting the functional classes of genes involved and pathways altered during the course of disease. To further understand the contribution of individual genes to the pathogenesis of ECM, we examined the biological relevance of three molecules – CD14, galectin-3, and OX40 that were previously shown to be overexpressed during ECM. We find that CD14 plays a predominant role in the induction of ECM and regulation of parasite density; deletion of the CD14 gene not only prevented the onset of disease in a majority of susceptible mice (only 21% of CD14-deficient compared to 80% of wildtype mice developed ECM, p<0.0004) but also had an ameliorating effect on parasitemia (a 2 fold reduction during the cerebral phase). Furthermore, deletion of the galectin-3 gene in susceptible C57BL/6 mice resulted in partial protection from ECM (47% of galectin-3-deficient versus 93% of wildtype mice developed ECM, p<0.0073). Subsequent adherence assays suggest that galectin-3 induced pathogenesis of ECM is not mediated by the recognition and binding of galectin-3 to P. berghei ANKA parasites. A previous study of ECM has demonstrated that brain infiltrating T cells are strongly activated and are CD44+CD62L− differentiated memory T cells [1]. We find that OX40, a marker of both T cell activation and memory, is selectively upregulated in the brain during ECM and its distribution among CD4+ and CD8+ T cells accumulated in the brain vasculature is approximately equal

    Current Industrial Practices in Assessing CYP450 Enzyme Induction: Preclinical and Clinical

    Get PDF
    Induction of drug metabolizing enzymes, such as the cytochromes P450 (CYP) is known to cause drug-drug interactions due to increased elimination of co-administered drugs. This increased elimination may lead to significant reduction or complete loss of efficacy of the co-administered drug. Due to the significance of such drug interactions, many pharmaceutical companies employ screening and characterization models which predict CYP enzyme induction to avoid or attenuate the potential for drug interactions with new drug candidates. The most common mechanism of CYP induction is transcriptional gene activation. Activation is mediated by nuclear receptors, such as AhR, CAR, and PXR that function as transcription factors. Early high throughput screening models utilize these nuclear hormone receptors in ligand binding or cell-based transactivation/reporter assays. In addition, immortalized hepatocyte cell lines can be used to assess enzyme induction of specific drug metabolizing enzymes. Cultured primary human hepatocytes, the best established in vitro model for predicting enzyme induction and most accepted by regulatory agencies, is the predominant assay used to evaluate induction of a wide variety of drug metabolizing enzymes. These in vitro models are able to appropriately predict enzyme induction in patients when compared to clinical drug-drug interactions. Finally, transgenic animal models and the cynomolgus monkey have also been shown to recapitulate human enzyme induction and may be appropriate in vivo animal models for predicting human drug interactions

    Smoking Cessation Pharmacogenetics: Analysis of Varenicline and Bupropion in Placebo-Controlled Clinical Trials

    Get PDF
    Despite effective therapies for smoking cessation, most smokers find quitting difficult and most successful quitters relapse. Considerable evidence supports a genetic risk for nicotine dependence; however, less is known about the pharmacogenetics of smoking cessation. In the first pharmacogenetic investigation of the efficacy of varenicline and bupropion, we examined whether genes important in the pharmacodynamics and pharmacokinetics of these drugs and nicotine predict medication efficacy and adverse events. Subjects participated in randomized, double-blind, placebo-controlled smoking cessation clinical trials, comparing varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, with bupropion, a norepinephrine/dopamine reuptake inhibitor, and placebo. Primary analysis included 1175 smokers of European ancestry, and 785 single nucleotide polymorphisms from 24 genes, representing 254 linkage disequilibrium (LD) bins (genes included nAChR subunits, additional varenicline-specific genes, and genes involved in nicotine or bupropion metabolism). For varenicline, continuous abstinence (weeks 9–12) was associated with multiple nAChR subunit genes (including CHRNB2, CHRNA5, and CHRNA4) (OR=1.76; 95% CI: 1.23–2.52) (p<0.005); for bupropion, abstinence was associated with CYP2B6 (OR=1.78; 95% CI: 1.27–2.50) (p<0.001). Incidence of nausea was associated with several nAChR subunit genes (OR=0.50; 95% CI: 0.36–0.70) (p<0.0001) and time to relapse after quitting was associated with HTR3B (HR=1.97; 95% CI: 1.45–2.68) (p<0.0001). These data provide evidence for multiple genetic loci contributing to smoking cessation and therapeutic response. Different loci are associated with varenicline vs bupropion response, suggesting that additional research may identify clinically useful markers to guide treatment decisions

    Recruitment and baseline data of the Aging and Cognitive Health Evaluation in Elders (ACHIEVE) study: A randomized trial of a hearing loss intervention for reducing cognitive decline

    Get PDF
    INTRODUCTIONHearing loss is highly prevalent among older adults and independently associated with cognitive decline. The Aging and Cognitive Health Evaluation in Elders (ACHIEVE) study is a multicenter randomized control trial (partially nested within the infrastructure of an observational cohort study, the Atherosclerosis Risk in Communities [ARIC] study) to determine the efficacy of best-practice hearing treatment to reduce cognitive decline over 3 years. The goal of this paper is to describe the recruitment process and baseline results.METHODSMultiple strategies were used to recruit community-dwelling 70–84-year-old participants with adult-onset hearing loss who were free of substantial cognitive impairment from the parent ARIC study and de novo from the surrounding communities into the trial. Participants completed telephone screening, an in-person hearing, vision, and cognitive screening, and a comprehensive hearing assessment to determine eligibility.RESULTSOver a 24-month period, 3004 telephone screenings resulted in 2344 in-person hearing, vision, and cognition screenings and 1294 comprehensive hearing screenings. Among 1102 eligible, 977 were randomized into the trial (median age = 76.4 years; 53.5% female; 87.8% White; 53.3% held a Bachelor's degree or higher). Participants recruited through the ARIC study were recruited much earlier and were less likely to report hearing loss interfered with their quality of life relative to participants recruited de novo from the community. Minor differences in baseline hearing or health characteristics were found by recruitment route (i.e., ARIC study or de novo) and by study site.DISCUSSIONThe ACHIEVE study successfully completed enrollment over 2 years that met originally projected rates of recruitment. Substantial operational and scientific efficiencies during study startup were achieved through embedding this trial within the infrastructure of a longstanding and well-established observational study.HighlightsThe ACHIEVE study tests the effect of hearing intervention on cognitive decline.The study is partially nested within an existing cohort study.Over 2 years, 977 participants recruited and enrolled.Eligibility assessed by telephone and in-person for hearing, vision, and cognitive screening.The ACHIEVE study findings will have significant public health implications

    Description of the Baseline Audiologic Characteristics of the Participants Enrolled in the Aging and Cognitive Health Evaluation in Elders Study

    Get PDF
    Purpose:The Aging and Cognitive Health Evaluation in Elders (ACHIEVE) study is a randomized clinical trial designed to determine the effects of a best-practice hearing intervention versus a successful aging health education control intervention on cognitive decline among community-dwelling older adults with untreated mild-to-moderate hearing loss. We describe the baseline audiologic characteristics of the ACHIEVE participants.Method:Participants aged 70–84 years (N = 977; Mage = 76.8) were enrolled at four U.S. sites through two recruitment routes: (a) an ongoing longitudinal study and (b) de novo through the community. Participants underwent diagnostic evaluation including otoscopy, tympanometry, pure-tone and speech audiometry, speech-in-noise testing, and provided self-reported hearing abilities. Baseline characteristics are reported as frequencies (percentages) for categorical variables or medians (interquartiles, Q1–Q3) for continuous variables. Between-groups comparisons were conducted using chi-square tests for categorical variables or Kruskal–Wallis test for continuous variables. Spearman correlations assessed relationships between measured hearing function and self-reported hearing handicap.Results:The median four-frequency pure-tone average of the better ear was 39 dB HL, and the median speech-in-noise performance was a 6-dB SNR loss, indicating mild speech-in-noise difficulty. No clinically meaningful differences were found across sites. Significant differences in subjective measures were found for recruitment route. Expected correlations between hearing measurements and self-reported handicap were found.Conclusions:The extensive baseline audiologic characteristics reported here will inform future analyses examining associations between hearing loss and cognitive decline. The final ACHIEVE data set will be publicly available for use among the scientific community
    corecore