- 1 **Title:** Description of the Baseline Audiologic Characteristics of the Participants Enrolled in the
- 2 ACHIEVE Study
- 3

4 Authors:

- 5 Victoria A. Sanchez, AuD, PhD^{1,2, ¥*}
- 6 Michelle L. Arnold, AuD, $PhD^{2, \Psi}$
- 7 Joshua F. Betz, MS^{3,4,5}
- 8 Nicholas S. Reed, AuD^{3,4,5}
- 9 Sarah Faucette, AuD, PhD^{6,7}
- 10 Elizabeth Anderson, PhD⁸
- 11 Sheila Burgard, MS⁹
- 12 Josef Coresh, MD, PhD^{3,4,5}
- 13 Jennifer A. Deal, PhD^{3,4,5}
- 14 Ann Clock Eddins, PhD, MBA²
- 15 Adele M. Goman, PhD^{4,5}
- 16 Nancy W. Glynn, PhD¹⁰
- 17 Lisa Gravens-Mueller, MS⁹
- 18 Jaime Hampton, AuD¹¹
- 19 Kathleen M. Hayden, PhD¹¹
- 20 Alison R. Huang, PhD^{3,4,5}
- 21 Kaila Liou, AuD¹¹
- 22 Christine M. Mitchell, ScM^{4,5}
- 23 Thomas H. Mosley, Jr., PhD⁶

- Haley N. Neil, AuD^{1}
- 25 James S. Pankow, PhD^{8,12}
- 26 James Pike, MBA⁹
- 27 Jennifer A. Schrack, PhD^{4,13}
- 28 Laura Sherry, AuD⁵
- 29 Katherine H. Teece, AuD⁸
- 30 Kerry Witherell, AuD⁸
- 31 Frank R. Lin, MD, PhD^{4,5}
- 32 Theresa H. Chisolm, PhD²
- 33 For the ACHIEVE Collaborative Study,
- 34

35 ¹ Department of Otolaryngology-Head & Neck Surgery, University of South Florida, Tampa, FL

² Department of Communication Sciences & Disorder, University of South Florida Tampa, FL

³ Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD

⁴ Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD

⁵ Cochlear Center for Hearing & Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD

40 ⁶ The MIND Center, University of Mississippi Medical Center, Jackson, MS

41 ⁷ Department of Otolaryngology- Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS

- 42 ⁸ Minneapolis Field Center, University of Minnesota, Minneapolis, MN
- 43 ⁹ Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- ¹⁰ Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA
- 45 ¹¹ Department of Social Sciences and Health Policy, Wake Forest University School of Medicine,
- 46 Winston-Salem, NC

- 47 ¹² Division of Epidemiology and Community Health, University of Minnesota School of Public Health,
- 48 Minneapolis, MN
- 49 ¹³ Center on Aging and Health, Johns Hopkins University, Baltimore, MD
- 50 [¥]Shared first authorship ^{*}Corresponding Author
- 51 Correspondence: Victoria A. Sanchez, AuD, PhD
- 52 12901 Bruce B. Downs Blvd., MDC 73
- 53 Tampa, FL 33612
- 54 Fax: 813-974-7586 | Office: 813-974-1262 | <u>vasanchez@usf.edu</u>
- 55

56 **Running Header: "Hearing Characteristics in ACHIEVE"**

57

58 Key words: Clinical Trial, Hearing Loss, Speech Perception, Hearing Handicap, Recruitment, Aging,
59 Cognition, Dementia

60

61 Conflicts of Interest: Portions of this work were presented at the International Hearing Aid Conference 62 (IHCON, 2022, Tahoe, CA), and the Association for Research in Otolaryngology (ARO, 2023, Orlando, 63 FL). Dr. Sanchez reported industry funding related to consulting or research support from Otonomy Inc., 64 Autifony Therapeutics Ltd., Boehringer Ingelheim, Frequency Therapeutics Ltd., Pipeline Therapeutics, 65 Aerin Medical, Oticon Medical, Helen of Troy Ltd., Sonova Holding AG, and Phonak USA. Mr. Betz 66 reported equity and entitlement to future royalties from miDiagnostics. Dr. Reed reported serving on the 67 scientific advisory boards of Neosensory. Dr. Lin reported being a consultant to Frequency Therapeutics 68 and Apple and being the director of a research center funded in part by a philanthropic gift from 69 Cochlear Ltd to the Johns Hopkins Bloomberg School of Public Health. Dr. Lin is also a board member 70 of the nonprofit Access HEARS. All other authors report no relevant disclosures.

71 **ABSTRACT (250/250 words)**

Purpose: The Aging and Cognitive Health Evaluation in Elders (ACHIEVE) Study is a randomized clinical trial designed to determine the effects of a best-practice hearing intervention versus a successful aging health education control intervention on cognitive decline among community-dwelling older adults with untreated mild-to-moderate hearing loss. We describe the baseline audiologic characteristics of the ACHIEVE participants.

77

78 **Method:** Participants aged 70-84 years (N = 977; median age = 76.8) were enrolled at four U.S. sites 79 through two recruitment routes: (1) an ongoing longitudinal study; and (2) de novo through the 80 community. Participants underwent diagnostic evaluation including otoscopy, tympanometry, pure-tone 81 and speech audiometry, speech-in-noise testing, and provided self-reported hearing abilities. Baseline 82 characteristics are reported as frequencies (percentages) for categorical variables or medians 83 [interquartiles, Q1-Q3] for continuous variables. Between-group comparisons were conducted using chi-84 square tests for categorical variables or Kruskal-Wallis test for continuous variables. Spearman 85 correlations assessed relationships between measured hearing function and self-reported hearing 86 handicap.

87

Results: The median 4-frequency pure-tone average of the better ear was 39-dB HL and the median speech-in-noise performance was a 6 dB SNR Loss, indicating mild speech-in-noise difficulty. No clinically meaningful differences were found across sites. Significant differences in subjective measures were found for recruitment route. Expected correlations between hearing measurements and selfreported handicap were found.

93

- 94 **Conclusions:** The extensive baseline audiologic characteristics reported here will inform future analyses
- 95 examining associations between hearing loss and cognitive decline. The final ACHIEVE dataset will be
- 96 publicly available for use among the scientific community.

97

98 Introduction

99

100	Epidemiologic studies indicate that hearing loss is independently associated with accelerated	
101	cognitive decline and dementia. A recent Lancet global commission on dementia analysis found hearing	
102	loss potentially accounts for the largest population attributable risk among modifiable risk factors for	
103	dementia. Specifically, the report suggests nearly 8% of dementia cases across the globe could be	
104	attributable to hearing loss (Livingston et al., 2020). Evidence linking hearing loss and cognition has	
105	been obtained from self-reported and measured cognition (e.g., standardized neurocognitive test	
106	batteries designed to assess domains of attention, memory, language, processing speed, visuospatial, and	
107	executive functions), as well as self-reported and measured hearing (e.g., pure-tone thresholds) loss. A	
108	meta-analysis including three studies examining the relationships between measured hearing loss and	
109	standardized cognitive measures estimated a pooled relative risk ratio of 1.94 (95% confidence interval	
110	[CI; 1.38, 2.73]), indicating an increased likelihood developing dementia among included persons with	
111	measured peripheral hearing loss (Livingston et al., 2017).	
112	A number of mechanisms seek to explain the association between hearing loss and cognitive	
113	decline (Baltes & Lindenberger, 1997; Lin & Albert, 2014; Powell et al., 2021; Wayne & Johnsrude,	
114	2015). These hypothesized mechanisms include: 1) increased cognitive load; 2) structural changes in the	
115	brain as a result of the degraded auditory signal; and 3) impaired verbal communication leading to	
116	reduced social engagement and increases in loneliness. Importantly, these mechanistic pathways may be	
117	modifiable with comprehensive hearing loss treatment, the cornerstone of which is the use of hearing	
118	aids. Determining the efficacy of hearing loss intervention on cognitive decline is of high importance	
119	given the aging of the population and the personal, socioeconomic, and public health implications of	
120		

120 both hearing loss and cognitive impairment in older adults (Livingston et al., 2020). Findings from

studies investigating the relationships between hearing device use and cognition are mixed, with some individual studies demonstrating positive results (e.g., Dawes et al. 2015; Maharani et al. 2018)) and some showing no relationship (Atef et al., 2023). Recently reported results of a meta-analysis pooling data across 19 observational studies and 4 trials found the use of hearing restorative devices (hearing aids; cochlear implants) was associated with a decreased risk of cognitive decline. Despite this finding, the authors highlighted the need to examine cognitive and other proximal benefits in randomized trials to better understand this relationship (Denham et al., 2022; Yeo et al., 2022).

128 A recently completed clinical trial, referred to as the "Aging and Cognitive Health Evaluation in 129 Elders" (ACHIEVE Study) is investigating the effect of best practice hearing intervention on cognitive 130 decline, dementia, and other health outcomes. The ACHIEVE Study was designed to determine the effects of a best practices hearing intervention compared to a health education control intervention. The 131 132 hearing intervention included four 1-hour sessions with a study audiologist where participants received 133 systematic, yet personalized, hearing counseling and self-management support in addition to bilateral 134 prescriptive-fit hearing aids and other hearing assistive technologies (Sanchez et al., 2020). Participants 135 assigned to the health education active control also completed four 1-hour intervention sessions with a 136 certified health educator who discussed healthy aging, chronic disease, and disability prevention, per the 137 standardized administration of the 10 Keys to Healthy Aging program (Newman et al., 2010).

The ACHIEVE protocol details are reported elsewhere (Jennifer A. Deal et al., 2018) and included on the ClinicalTrials.gov website (ClinicalTrials.gov Identifier: NCT03243422), but, briefly, the trial recruited community-dwelling older adults with untreated mild-to-moderate hearing loss between 2018-2019 from four study sites located in the United States. Participants were recruited either from the ongoing Atherosclerosis Risk in Communities (ARIC) longitudinal observational study (ClinicalTrials.gov Identifier: NCT00005131), which begin in 1987, or *de novo* from the local study site 144 communities. The ARIC study is a prospective cohort study that enrolled 15,792 participants aged 45-145 64 years between 1987-1989 (ARIC, 1989; Wright et al., 2021) who have been continuously followed 146 with study visits to the present. Participants recruited to the ACHIEVE Study were English speaking 147 adults between 70 and 84 years old and measured to be free from substantial cognitive impairment with 148 a Mini-Mental State Exam [MMSE (Arevalo-Rodriguez et al., 2021)] ≥23 for high school degree or less 149 ≥25 for some college or more. Participants reported adult-onset hearing loss that was measured (four-150 frequency pure tone average [PTA; 500, 1000, 2000, 4000 Hz]) in the better-hearing ear to be \geq 30 151 decibels (dB HL) and < 70 dB HL with word recognition in quiet performance $\ge 60\%$. The degree and 152 configuration of hearing loss was selected to allow for recruitment of individuals most likely to benefit 153 from the use of conventional hearing aids (Humes, 2019; Stevens et al., 2011). Participants were 154 randomized to receive either a best-practices hearing intervention (Sanchez et al., 2020), or a successful 155 aging health education control intervention (Newman et al., 2010), and followed with semiannual visits 156 for 3 years. The primary outcome of the study evaluated rates of cognitive decline (measured global 157 cognitive function) (Lin et al., 2023). Additional analyses and dissemination of the results are 158 forthcoming, with secondary cognitive outcomes including domain-specific cognitive declines (memory, 159 executive function, and language) and incident cognitive impairment, and other outcomes including 160 brain structure on magnetic resonance imaging (MRI), health-related quality of life, physical and social 161 function, and physical activity.

162 The purpose of this work is to provide a comprehensive description of the baseline audiological 163 characteristics of the ACHIEVE participants. Baseline characteristic reports are important to thoroughly 164 describe the patient population enrolled in a clinical trial, especially in multidisciplinary and large-scale 165 trials that cannot allow for such details to be reported in their outcome reports. Examples of similar 166 baseline characteristics reports are commonly reported in the literature of large-scaled multi-site trials, 167 such as for treatments for cardiovascular disease, neurological disorders, and diabetes (Mentz et al., 168 2017; Pfeffer et al., 2009). Included in this report of the enrolled ACHIEVE participants are hearing 169 function and performance data (e.g., audiometry, word recognition in quiet performance, speech 170 perception in noise) and self-reported hearing difficulty and hearing handicap. We review differences 171 among audiologic results based on geographical location (e.g., study sites) and related to recruitment 172 route (e.g., ARIC vs. *de novo*). Through our goal of thoroughly reporting the baseline hearing 173 characteristics we have a complete understanding of the cohort's hearing, and we will comment on the 174 baseline characteristics with respect to the hearing intervention that was designed for the trial. This 175 report thoroughly characterizing the audiological results will serve as one of several descriptive, genre-176 specific baseline papers, intended to offer deep complementary information for interpreting the main 177 trial results and all outcome papers forthcoming. The work presented here will enrich future analyses 178 evaluating the association between hearing loss and cognitive decline, and these data, as well as the 179 broader ACHIEVE dataset, will become publicly available to the scientific community once the main 180 ACHIEVE study results are published in 2023-2024.

181 Methods

182

183 Study Design, Setting, Recruitment, Participant Demographics

The ACHIEVE Study is a randomized phase III clinical trial to determine the effects of a best practice hearing intervention versus a successful aging health education control intervention on cognitive decline among community-dwelling older adults with untreated mild-to-moderate sensorineural hearing loss (SNHL). Full details of the ACHIEVE study design were described elsewhere (Deal et al., 2018). The study is supported by seven institutions: Johns Hopkins University, University of North Carolina – Chapel Hill, University of South Florida, University of Pittsburgh, University of Minnesota, Wake Forest University, University of Mississippi Medical Center; with the
four university-affiliated study sites located in: Washington County, Maryland (MD); Jackson,
Mississippi (MS); Forsyth County, North Carolina (NC); and Minneapolis, Minnesota (MN). The
Institutional Review Boards at all centers reviewed and approved the study protocol. There were no
participant costs for the interventions provided as part of the protocol and paid transportation to and
from the study center was provided for participants if needed. Participants received monetized
compensation for each study visit completed.

197 At the study sites, participants were recruited either from the ongoing ARIC study, or *de novo* 198 from the local study site communities. Local study site recruitment methods included clinic referrals and 199 advertisements posted throughout the community and via online forums. Recruitment through the ARIC 200 study was targeted, with previous hearing loss data available for review. ARIC participants were 201 directly contacted about the opportunity to join the ACHIEVE study either through mail, telephone, or at 202 their next pre-planned ARIC study visit [i.e., ARIC visit 7, which was ongoing at the time of ACHIEVE 203 study enrollment (ARIC, 1989)]. Participants completed a screening and baseline visit, four intervention 204 visits and then were seen semi- and annually for the next three years.

At the screening visit, participants completed questionnaires that captured health history, demographics, education, and other social determinants of health. Sex and race/ethnicity were selfreported using federal guidelines in existence at that time. Participants self-reported sex, as either male or female, rather than gender. Questionnaire items related to hearing history included the presence/absence of tinnitus, noise exposure, and history of otologic disorders.

210

211

212 Audiological Evaluation

213 High-level overviews of the ACHIEVE comprehensive audiological evaluation, including 214 audiometric-related inclusion/exclusion criteria, are available in the literature (J.A. Deal et al., 2018; 215 Sanchez et al., 2020). The objective of the audiological evaluation was to quantify the type and 216 magnitude of hearing loss and confirm participant candidacy for the hearing intervention designed for 217 the ACHIEVE Study. The intervention, described in detail by Sanchez, Arnold et al., 2020, is evidence-218 based and utilizes conventional hearing aids as a key component, along with goal setting, hearing 219 assistive technologies, counseling, education and self-support management, and hearing-related 220 outcomes assessment. If the results of the audiological evaluation were suggestive of a possible 221 conductive or retrocochlear condition, medical assessment and clearance for use of conventional hearing 222 aids was required. All audiological assessments were conducted in single-walled, 7x7 sound attenuating 223 WhisperRooms at each site using Interacoustics Equinox 2.0 AC440 diagnostic, two channel audiometers. Guidelines were followed for routine equipment calibration, maintenance, and sound field 224 225 specifications (American National Standards Institute, 1999, 2018) at each site.

226

227 Assessment of the Outer & Middle Ear Status. Otoscopy was completed to view the structure 228 of the ear canal and tympanic membrane. The audiologist determined the potential for a collapsing ear 229 canal, evaluated the presence of cerumen and need for self-management or professional removal of 230 cerumen, or other problems (e.g., perforation, drainage, blood) that may interfere with audiometric 231 testing. Additionally, tympanometry with a 226 Hz probe frequency was obtained with an Interacoustics 232 Titan middle-ear analyzer (version 1). Tympanometry was completed to evaluate the physiological 233 function of the middle ear. Site audiologists determined and reported the tympanogram tracings as 234 normal (type A) or abnormal (types: A_S, A_D, B or C).

235

236 Assessment of Pure-tone Sensitivity. Pure-tone air- and bone-conduction thresholds were 237 obtained using a modified Hughson-Westlake (1944) psychophysical bracketing method (Carhart & 238 Jerger, 1959). Air-conduction thresholds were measured at octaves from 250 to 8000 Hz, including the 239 inter-octave frequencies of 3000 and 6000 Hz. Pulsed tones were used with E-A-R 3A insert earphones, 240 unless otherwise indicated. Bone-conduction thresholds were measured at 500, 1000, 2000, and 4000 241 Hz. Masking, using plateau method (Hood, 1960), for both air- and bone- conduction thresholds was 242 completed if needed based on transducer specific interaural attenuation levels. If the audiologist 243 indicated there was "no response" at a given frequency (i.e., a measurable threshold could not be 244 obtained due to limits of the audiometer) the audiologists indicated they could not measure that 245 threshold and noted the limits of the audiometer that was attempted.

246

247 Assessment of Speech Recognition. As a criterion for the potential to successfully utilize 248 hearing aids, participants were required to have word recognition performance in quiet greater than 60% 249 in at least one ear for inclusion (based on criteria from Humes et al. (2019). Word recognition in quiet 250 testing was performed using recorded speech stimuli to determine the participant's optimal performance 251 under controlled, standardized conditions and to reveal any asymmetry in performance not uncovered by 252 pure-tone audiometry. Word recognition in quiet stimuli were NU-6 ordered-by-difficulty monosyllables 253 (Hurley & Sells, 2003) presented monaurally at a sensation level referenced to the 2000 Hz threshold 254 that is a presumed optimal listening level (Guthrie & Mackersie, 2009). Based on recognition 255 performance of the first 10 administered words and following the ordered-by-difficulty procedures, 256 either just 10 words or 25 words were presented to each ear. Masking of the non-test ear was used, as 257 needed, presented at 20 dB below the presentation level of the speech stimuli (Hood, 1960; Studebaker, 1967). E-A-R 3A insert earphones were used unless otherwise indicated. Scoring was determined by 258

tallying the participant's correctly repeated words and was recorded as percentage correct scores. Speech recognition threshold (SRT) measurement with spondaic words was completed at the discretion of the audiologist, specifically to confirm reliability of pure-tone thresholds.

262 Speech recognition in noise performance was assessed in sound field using the Quick Speech-in-263 Noise Test (QuickSIN; Etymotic Research, 2001, Killion et al. (2003)). The QuickSIN consists of a 264 series of lists of 6 sentences, with 5 target words per sentence, spoken by a woman talker, mixed with 265 multi-talker speech babble that increases in 5-dB increments with each consecutive sentence 266 presentation, for a signal-to-noise ratio (SNR) varying from 25 dB to 0 dB. The QuickSIN test was 267 administered with channel 1 and channel 2 routed to separate RadioEar SP90 speakers. The sound field 268 environment was calibrated daily in dB SPL using the substitution method (Walker et al., 1984). Sentences were presented on channel 1 at 0⁰ azimuth using a fixed level of 70-dB SPL. Multi-talker 269 babble was presented on channel 2 at 180° azimuth, manually adjusting the SNR from 25 dB to 0 dB in 270 271 5-dB increments. The most homogeneous QuickSIN lists were used in the ACHIEVE study (McArdle & 272 Wilson, 2006). Participants were presented a practice list and then two test lists (list 1 and 2) for a total 273 of 60 possible target words to recognize. Scoring was determined by tallying the participant's correctly 274 repeated target words for each test list. The total correctly recognized words were summed to determine 275 number of target words correctly recognized across both lists and all SNRs, allowing for a percentage 276 correct calculation (e.g., number correct out of 60 possible target words). In addition, using the 277 normalized threshold calculation based on the Spearman-Kärber equation (Killion et al., 2004), the 'dB 278 SNR Loss' was calculated using the average performance from the two test lists.

279

280 Self-Report Hearing Ability

281 Two self-report measures were used to assess subjective hearing ability, and both were completed 282 in a face-to-face format. First, participants answered the single 6-item Likert-type question from the 283 National Health and Nutrition Examination Survey (NHANES) conducted by the National Center for 284 Health Statistics (question AUQ054; CDC, 2023). This NHANES-developed question is often adopted 285 by others (e.g., (Dillard et al., 2022; Marrone et al., 2019)) and asks, "Which statement best describes your hearing? Would you say your hearing is: " with response options of: "Excellent; Good; A Little 286 287 Trouble; Moderate Trouble; A Lot of Trouble, and Deaf". The second approach involved the use of a 288 standardized measure of hearing handicap, the Hearing Handicap Inventory for the Elderly - Screening 289 Version [HHIE-S; (Ventry & Weinstein, 1983)], The HHIE-S is a validated and highly reliable (r = .97) 290 10-item questionnaire that measures perceived hearing handicap. HHIE-S scores range from 0 to 40 with 291 higher scores indicating greater self-perceived handicap, and the total scores can be categorized into No 292 Handicap (0-8), Mild-Moderate Handicap (10-24), and Severe Handicap (26-40). A total score of 10 or 293 greater is suggestive of significant self-perceived hearing handicap (American Speech-Language-294 Hearing Association, 1997).

295

296 **Quality Control of Data, Database Management, & Statistical Analysis**

An extensive quality assurance and quality control protocol was designed for the ACHIEVE Study. As described in detail elsewhere (Arnold et al., 2021), the comprehensive audiological evaluation was completed by licensed, nationally certified audiologists who completed training in ACHIEVE hearing related protocol administration. Audiological procedures were monitored through direct observation and validating data entry, ensuring fidelity across the study sites. After the baseline data were captured in the electronic database, the data coordinating center, located at the University of North Carolina at Chapel Hill, completed a database review followed by a database lock. During the

304 database review process, data were assessed using visual inspection of plots as well as influence 305 statistics and residuals from generalized additive models. Observations were flagged for review based on 306 leverage and Cook's distance to identify unusual patterns among the variables. The verified and 307 validated data were used for all analyses. Missing data were not imputed for analysis in the current 308 study. Less than 2% of the data were missing with all missingness reported. For air-conduction pure-309 tone audiometry, if the audiologist indicated there was "no response" at a given frequency (i.e., a 310 measurable threshold could not be obtained due to limits of the audiometer) the threshold was set to 311 110-dB HL for inclusion in the descriptive statistics reported. There were 156 participants with one or 312 more 'no response(s)' and a total of 324 thresholds set to 110-dB HL in the final dataset. Using the pure-313 tone audiometric results, the 'better ear' was determined by selecting the ear with lowest audiometric 314 thresholds; however, if the ears were identical, then the right ear was defined as the better ear. 315 All statistical analyses were completed using R version 4.2.0 (R Foundation for Statistical 316 Computing, Vienna, Austria), using the agicolae (1.3-5), boot (1.3-28.1), GLMMadaptive (0.8-8), 317 multcomp (1.4-23), splines (4.2.3), and VGAM (1.1-8) packages. Descriptive statistics were used to 318 present the audiologic characteristics and are provided as frequencies (percentages) for categorical 319 variables or medians [interquartile range] for continuous variables. To visualize QuickSIN results, data 320 were fit to generalized linear mixed models (GLMMs) to evaluate subject-specific associations between 321 presentation level and speech-in-noise performance, accounting for the repeated measures (i.e., the two 322 test lists administered) within individuals using subject-specific intercepts and slopes (i.e., random 323 effects). Population-average associations were obtained by marginalizing (i.e., integrating) over the 324 subject-specific effects, allowing visualization of the data through a psychometric function. Spearman-325 Rho correlational analyses were conducted to examine the bivariate relationships between 4-frequency 326 PTA, QuickSIN performance, word recognition in quiet, and self-reported handicap (i.e., HHIE-S).

327 Confidence intervals for these correlations were obtained using 10,000 non-parametric bootstrap 328 replicates. Differences between study sites and recruitment methods (*de novo* vs. ARIC) for objectively 329 measured and subjectively measured baseline data were evaluated using a Kruskal-Wallis test for 330 continuous variables (Kruskal & Wallis, 1952). Associations with categorical outcomes were assessed 331 using proportional odds and multinomial logistic regression models. The proportional odds assumption 332 was assessed using a likelihood ratio test. When the proportional odds assumption was violated, the 333 multinomial model was used instead. Multiple comparisons were addressed using Holm's correction 334 (Holm, 1979).

335

336 Results & Preliminary Discussion

337

338 Recruitment, Enrollment, Participant Demographics and Hearing History Characteristics

339 Recruitment and enrollment occurred between 2018-2019. Additional information about 340 recruitment results is published elsewhere (see Reed et al., under review). Of the 977 participants 341 enrolled, 24.4% were recruited through the ARIC study, while 75.6% were recruited *de novo* from the 342 surrounding communities of the four university-affiliated clinical study sites. Recruitment allocation 343 across the study sites included 262 (26.8%) from Washington County, Maryland (MD); 243 (24.9%) 344 from Jackson, Mississippi (MS); 236 (24.2%) from Forsyth County, North Carolina (NC); and 236 345 (24.2%) from Minneapolis, Minnesota (MN). 346 **Supplemental Table ST1** provides demographic results by study site and recruitment route. 347 Participants were community-dwelling adults aged 70-84 years (median = 76.8 years, IQR: 6) and

- 348 53.5% female. Most participants were White (87.6%; 11.5% Black; 0.9% of another race). The median
- number of people living in their household was two (IQR: 1) with 62% reporting being currently

married. Approximately half of participants (53.4%) had a bachelor's degree or higher, 42.8% had a
high school diploma or had completed some college, and 3.8% did not complete high school.

352 **ST1 also** provides additional information about hearing history variables including self-reported 353 tinnitus perception, noise exposure, and otologic medical history. Approximately half of the participants 354 (52%) reported no history of tinnitus in either ear, with 37% indicating bilateral tinnitus. Occupational noise exposure was reported by 27% of the participants and 11% reported other noise exposure. Nearly 355 356 all participants denied any medical otologic history, with 97% indicating no ear surgery and 99% 357 indicating neither a diagnosis of sudden idiopathic nor Meniere's Disease related. The distributions of 358 the hearing history characteristics reported are consistent with our goal of recruiting adults with 359 primarily age-related SNHL. Visual inspection of the data in ST1 indicate that these hearing history 360 characteristics appear comparable across study sites and recruitment routes.

361

362 *Outer & Middle Ear Function*

363 Shown in Supplemental Table ST2 are the data for the results from otoscopy and 364 tympanometry examinations. Of the 977 participants, 95% of the monaural otoscopic examinations were 365 within normal limits. The ears indicated as abnormal otoscopy were noted as either required cerumen 366 management (75 ears), or noted as abnormal (28 ears) for other reasons (e.g., foreign object in ear, blood 367 visualized). As summarized in Supplemental Table S3, there were no difference in otoscopy by 368 recruitment route, but differences across sites (Right Ear p = <0.001; Left Ear p = 0.005). Despite a 369 significant difference overall in otoscopy across sites, the only pairwise difference that reached 370 statistical significance was between MD and NC sites for both the right and left ears, but the largest 371 difference in the number of abnormal otoscopic exams differed by only 8 ears.

372	Most participants had normal middle ear function, with 85% and 84% of the participants having		
373	normal tympanograms (type A) for the left ($n = 830$) and right ($n = 824$) ears, as classified for data entry		
374	by the site audiologist, respectively. There were missing data due to inability to maintain a hermetic seal		
375	to perform the measurement in 18 left ears and 13 right ears. As summarized in Supplemental Table		
376	S3, there were no differences in tympanometry by recruitment route, but differences across sites (Right		
377	Ear $\chi^2(3) = 18.97$, p < .001); Left Ear $\chi^2(3) = 26.917$, p < .001). There were pairwise differences in the		
378	proportions of participants with abnormal tympanometry as a function of study site. There were		
379	significant pair-wise differences with NC being different from MS for both the right and left ears and		
380	different from MD for the right ear only. Across both right and left ears, the greatest proportion of		
381	abnormal results was found for the MS site (20.6% and 21.8%, respectively) while relatively few		
382	participants at the NC site had abnormal tympanograms (7.6% and 7.2% for right and left ears,		
383	respectively). While these site differences were observed, overall, there was a small proportion of		
384	participants who exhibited abnormal otoscopic or tympanometric results, medical examination		
385	confirmed that no participants at any sites had outer or middle ear disorders or dysfunctions that were a		
386	contraindication for hearing aids.		

387

388 <u>Pure-Tone Audiometry Results</u>

To determine the type of hearing loss in each ear, air-conduction and bone-conduction thresholds, with appropriate masking, were evaluated. As shown in **Supplemental Table ST2**, hearing losses were classified as sensorineural (SNHL), conductive hearing loss (CHL), mixed hearing loss (MHL), or unable to determine (UD) based on pure-tone audiometry alone. For each frequency tested by air- and bone-conduction an air-bone gap of 15 dB or greater resulted in a classification of a frequencyspecific conductive component. There were 1,378 ears with no conductive component, and these ears

395 were classified as SNHL. For the remaining ears a present air-bone gap (576 ears or 288 participants), 396 the type of hearing loss was vetted through an adjudication process for which two independent 397 audiologists reviewed the audiogram to determine the overall type of hearing loss. Of 288 patients 398 reviewed, 22 required a third reviewer and adjudication. The final classification of ears included 16 399 MHLs, 5 UD, 0 CHLs, with the remaining typed as SNHL (1,933 ears). Therefore 98.1% of participants 400 had bilateral SNHL, 0.2% bilateral MHL, 1.7% had a SNHL ear and either a MHL or UD loss in other 401 ear; thus, overall, most participants had bilateral SNHL. Visual inspection of the hearing loss types did 402 not differ across sites nor recruitment route. Along with most losses being sensorineural, most 403 participants had symmetrical hearing (83.1%) as defined by no greater than a 10-dB difference in 404 thresholds at 3 consecutive frequencies or no greater than a 20-dB difference at two consecutive octave 405 frequencies between ears. Right- and left-ear specific details of four-frequency and three-frequency 406 PTAs are provided in **Supplemental Table ST2** and the ear-specific audiogram is displayed in 407 Supplemental Figure SF1.

Better ear and poorer ear air-conduction threshold results are illustrated in Figure 1 and 408 409 summarized in **Table 1**. Figure 1 shows the pure-tone thresholds in violin plots which depict the 410 distributions of data using density curves, where the width of the curve corresponds with the 411 approximate frequency of data points in each region. Our density curves are overlaid on box plots that 412 depict numerical summaries of the data, with a central line marking the median value, the box denoting the 75th and 25th percentiles, lines extending showing the upper and lower fences of the data, and all 413 414 observations outside the upper and lower fences are plotted individually. The median audiogram in 415 Figure 1 shows a pattern of hearing loss which is consistent with gradually sloping, symmetrical SNHL. 416 Table 1 shows that the median four-frequency PTA for the better ear was 39-dB HL (IQR 33-417 43), and the median for the poorer ear was 42-dB HL (IQR 38-48). As summarized in Supplemental

418	Table S3, there were some differences across sites. Despite a significant difference overall in four-	
419	frequency PTA across sites (overall $\chi 2$ (3) = 8.109, p = .044), no pairwise differences reached statistical	
420	significance, with the largest difference in medians between sites being 2 dB HL. No difference in PTA	
421	was observed by recruitment route ($\chi 2$ (1) = 0.461, p = .497), with the difference in medians between	
422	recruitment routes being 1 dB HL.	
423	We also examined the better-ear four-frequency PTAs with respect to the World Health	
424	Organization (WHO) categorizations (World Health Organization, 2021), for which a better-ear four-	
425	frequency PTA \leq 19 dB HL corresponds to " <i>normal</i> "; 20-34.9 dB HL to " <i>mild</i> "; 35-49 dB HL to	
426	"moderate"; 50-64.9 dB HL to "moderately severe"; 65-79 dB HL to "severe"; and, 80+ dB HL to	
427	"profound" hearing impairment. Based on this WHO grading criteria, 61% of our total number of	
428	participants had moderate hearing loss (PTA between 35-49.9 dB HL) and 29% had a mild loss (PTA	
429	between 20-34.9 dB HL), with very little variation in proportions across the two WHO categories as a	
430	function of study site or recruitment route. Although participants presented with a mild-to-moderate	
431	hearing loss, there was a large spread of the thresholds across the test frequencies as displayed in Figure	
432	1.	
433	Enter Figure 1. Near Here	
434		
435	Enter Table 1 Near Here	
436		
437	Speech Audiometry Performance	
438	Table 1 also shows median recognition performance in quiet for the better and poorer ears as	
439	determined by four-frequency PTA. Word recognition performance greater than 60% in at least one ear	
110		

440 was part of the inclusion criteria; thus, the range of scores was restricted to 60-100% for the higher

441	performing ear. The median word recognition in quiet performance was 90% in both the better and	
442	poorer ears (IQRs 90-100 and 88-96, respectively), with comparable findings shown for both ears as a	
443	function of recruitment route and a statistically significant difference was not observed (see	
444	Supplemental Table S3). Somewhat surprisingly, yet with a small effect size implicating the significant	
445	p-value is likely due to our large sample size, word recognition in quiet in the better ear was statistically	
446	significantly different across sites ($\chi^2(3) = 16.411$, p < .001). However, the largest pair-wise significant	
447		
448	Washington, MD sites was only 2.7 percentage points, and thus, would not be considered clinically	
449	meaningful (Thornton & Raffin, 1978). Overall, word recognition in quiet results are consistent with	
450	pure-tone audiometric results with respect to type, degree, and configuration of hearing loss.	
451	In contrast to word recognition in quiet, participants' speech recognition in noise performance as	
452	measured binaurally in sound field showed a larger spread of performance abilities. The median number	
453	of words correctly recognized was 20 out of 60 (IQR 16-22), indicating that across the various SNRs	
454	participants recognized about 33% of the target words (see Table 1). Also shown in Table 1 are the	
455	mean normalized threshold calculations based off the Spearman-Kärber equation [dB SNR Loss;	
456	(Killion et al., 2003)], with median of 6-dB SNR Loss (IQR 4-9), indicating that most participants	
457	needed between 4-9 dB SNR to correctly recognize 50% of the target words.	
458	Figure 2 displays psychometric functions plotting speech recognition performance as a function	
459	of SNR from 25- to 0-dB. The left-side panel shows data from all participants while the right-side panel	
460	shows data stratified by study site. The median number of words correct varied by only 1 across study	
461	sites and recruitment routes. With no difference in median SNR-values across recruitment routes, it is	
462	not surprising that there were no statistically significant differences (see Supplemental Table S3). As	
463	with Word Recognition in Quiet, there was a statistically significant relation to study site ($\chi^2(1) =$	

464	12.554, $p = .006$) and, again, the largest pair-wise significant difference in SNR Loss was between the
465	participants from the Jackson, MS and Washington, MD sites. The magnitude of the difference was
466	again relatively small at only 1.4 dB and unclear if clinically meaningful (Killion et al., 2003;
467	McShefferty et al., 2015). The critical difference while using two QuickSIN lists is +/- 2.7-dB SNR
468	(95% confidence interval; Killion et al., 2003), but it is appreciated that small changes in SNR can be
469	perceived as large differences by individual listeners (McShefferty et al., 2015).
470	
471	Enter Figure 2 about here
472	
473	
474	
475	Self-reported Hearing Handicap
476	Table 1 displays the results for the single-item self-reported hearing difficulty question and total
477	HHIE-S scores. Examining of the data for the single-item self-report question, most participants
478	reported either 'A Little Trouble' (42%) or 'Moderate Trouble' (36%) on the 6-point Likert scale, while
479	only 12% reported 'Excellent/Good' hearing and 10% reported 'A Lot of Trouble/Deaf'. Given these
480	data, perhaps the results of the HHIE-S are not surprising, in that scores for 31% of the participants
481	resulted in a classification of "No Handicap", while 50% had a "Mild-Moderate Handicap, and 18%
482	were categorized as having a "Severe Handicap". Further, the median HHIE scores increased
483	systematically as greater degrees of difficulty hearing were reported on the single question item
484	(Supplemental Figure SF2).
485	The median HHIE-S score was 14 [IQR: 8-22], indicating that the average participant was
486	classified as having a mild-moderate handicap. The median total score across sites ranged from 12 to 18

and the recruitment route medians differed by 6 points. Since self-reported hearing across sites ($\chi^2(9) =$ 487 24.843, p < .001) and recruitment route ($\chi^2(3) = 24.843$, p < .001) reached statistical significance, 488 489 logistic regression was used to assess differences by site and recruitment method. To further examine the 490 data comparisons of frequencies were done using contrasts of the coefficients which revealed a 491 significant difference between the Jackson, MS site which had the highest proportion of participants 492 reporting "A Lot of Trouble/Deaf" (16%) and the Minneapolis MN site in which only 4% of the 493 participants reported this level of difficulty. Similarly, the Kruskal-Wallis analysis revealed that study 494 site was significantly associated with HHIE-S scores ($\chi^2(3) = 14.844$, p = .002). Several pair-wise 495 comparisons were found to be statistically different for the HHIE-S scores, with the greatest hearing 496 handicap observed for the Jackson, MS participants and the least for the Minneapolis, MN participants, 497 consistent with the results for the single item question about hearing difficulty. 498 Finally, in contrast to the objective audiological results presented above for recruitment route 499 comparisons, the results of statistical analyses were significantly associated with both the single item 500 question of hearing difficulty (χ^2 (3) = 24.843, p < .001) and the HHIE-S score (χ^2 (1 = 37.881, p < .001). 501 A larger proportion of the *de novo* participants indicated greater hearing difficulty and were categorized 502 as having greater hearing handicap than the ARIC recruited participants. For example, only 27% of the 503 de novo participants were classified as having "no hearing handicap" while 45% of ARIC participants' 504 HHIE-S scores were classified as having "no hearing handicap". Similarly, a greater proportion of de 505 novo participants reported having "A Lot of Trouble/Deaf" (11.5%) than did those recruited from ARIC

506 (5.9%). In contrast, only 9% recruited *de novo* reported "Good/Excellent" hearing as compared to 20%
507 of those recruited via ARIC.

508

509 Relationships among Audiological Variables

510	Relationships between the audiological variables (i.e., PTA-Better Ear, PTA-Poorer Ear, Word	
511	Recognition-Better Ear, Word Recognition-Poorer Ear, HHIE-S, and SNR-Loss) were examined using	
512	Spearman-Rho analyses. Figure 3 displays scatter plots of the data and the results of the correlations.	
513	Not surprisingly, given our relatively large sample size, all relationships reached statistical significance	
514	($p < 0.001$). Thus we focus on the strength of the relationships, with reference to Cohen's effect size	
515	descriptors (Cohen, 2013), where $r \ge .50$ is considered large, $\ge .20$, is medium, and $\ge .10$ is a small	
516	effect, and with consideration of the confidence intervals for each statistic and the direction of the	
517	relationships (also displayed on Figure 3).	
518	Given that most of the hearing losses, as measured via pure tone audiometry, were noted to be	
519	symmetrical, it is not surprising that the strongest relationship between variables was between the PTAs	
520	for the better and poorer ears [$r = .83, 95\%$ CI, .79, .86]. The only other large effect size with PTA-	
521	Better Ear was with SNR-Loss [$r = .56, 95\%$ CI, .51, .60] with, as expected, the greater the hearing loss	
522	(i.e., the higher PTA) the poorer speech understanding in noise (i.e., the greater SNR Loss). Effect sizes	
523	are considered medium for the relationships between all other variables and PTA-Better Ear with 95%	
524	confidence intervals supporting a conclusion of a medium effect, with the direction of all relationships	
525	as expected. The correlation between poorer-ear PTA and SNR loss was medium to large ($r = .51, 95\%$	
526	CI: .46, .56). The direction of the relationship however is as expected with those with greater PTA losses	
527	in the poorer ear having poorer speech recognition in noise performance. The correlation between	
528	poorer-ear PTA and word recognition in the poorer-ear was medium to large ($r =45$, 95% CI:50, -	
529	.39). Point estimates and confidence intervals for the relationships between PTA-Poorer Ear, Word	
530	Recognition-Better and HHIE-S scores revealed medium effect sizes.	
531	The relationship between Word Recognition-Better and Poorer Ear was also found to have a	
532	medium effect size $[r = 34, 95\% \text{ CL}, 28, 39]$ Similarly the relationships between Word Recognition-	

532 medium effect size [r = .34, 95% CI, .28, .39]. Similarly, the relationships between Word Recognition-

533	Better Ear and SNR-Loss [$r =33$, 95% CI,38,26] and Word Recognition-Poorer Ear and SNR-		
534	Loss [$r =33$, 95% CI,39,27] reflect medium effects with poorer monaural speech recognition in		
535	quiet reflective of poorer binaural speech recognition in noise. Interestingly, but perhaps not surprising		
536	given clinical experience the weakest relationships were found between word recognition in quiet for		
537	better and poorer ears and self-report of hearing handicap with HHIE-S ($r =12$, $r = -19$, respectively).		
538	In fact, the 95% confidence interval (-0.18,05) for Word Recognition-Better Ear and HHIE-S suggest		
539	that the true effect size may be negligible. While the point estimate for the relationship between HHIE-S		
540	and SNR-Loss was classified also as a medium effect, the confidence intervals suggest a stronger		
541	association [$r = .25, 95\%$ CI, .19, .31] than the relationships between the self-report measure and		
542	objective speech recognition performance in quiet.		
543			
544	Enter Figure 3 About here		
544 545	Enter Figure 3 About here		
	Enter Figure 3 About here Discussion		
545			
545 546	Discussion		
545 546 547	Discussion A growing amount of evidence describes the association between hearing and cognition (Dawes		
545 546 547 548	Discussion A growing amount of evidence describes the association between hearing and cognition (Dawes et al., 2015; Golub et al., 2020; Liang et al., 2021; Lin, 2011; Livingston et al., 2020; Livingston et al.,		
545 546 547 548 549	Discussion A growing amount of evidence describes the association between hearing and cognition (Dawes et al., 2015; Golub et al., 2020; Liang et al., 2021; Lin, 2011; Livingston et al., 2020; Livingston et al., 2017; Merten et al., 2020; West et al., 2022). Some of this evidence has included subjective hearing		
545 546 547 548 549 550	Discussion A growing amount of evidence describes the association between hearing and cognition (Dawes et al., 2015; Golub et al., 2020; Liang et al., 2021; Lin, 2011; Livingston et al., 2020; Livingston et al., 2017; Merten et al., 2020; West et al., 2022). Some of this evidence has included subjective hearing measurements and/or objective hearing measurements, yet very few have reported on a thorough		
545 546 547 548 549 550 551	Discussion A growing amount of evidence describes the association between hearing and cognition (Dawes et al., 2015; Golub et al., 2020; Liang et al., 2021; Lin, 2011; Livingston et al., 2020; Livingston et al., 2017; Merten et al., 2020; West et al., 2022). Some of this evidence has included subjective hearing measurements and/or objective hearing measurements, yet very few have reported on a thorough comprehensive hearing evaluations in conjunction with measures of cognition. Although we report here		

555 Baseline data from large-scale clinical trials such as the ACHIEVE Study are crucial for 556 evaluating the validity and outcomes of a trial. Findings from systematic reviews of studies examining 557 the relationship between hearing intervention and cognition call for increased rigor in the collection and 558 reporting of hearing-related data. For example, Loughry, Kelly et al (2018) found only 36 studies in 559 which hearing loss was objectively assessed, and these studies used varying definitions of the 560 objectively measured hearing loss such as a single-frequency threshold, monaural or binaural 561 calculations of loss, and reports of thresholds for either the better or poorer ear. Sanders et al (2021) 562 identified 17 longitudinal studies, including 3526 participants which spanned over 30 years of research 563 in which both audiometrically defined hearing loss and cognition were measured. The degree of hearing 564 losses reported in included studies was similar to those in the ACHIEVE study (mild to moderate 565 SNHL), but there was a lack of rigorous reporting regarding how hearing measurements were completed 566 and how the audiological data were presented. Finally, the authors concluded that the effect of hearing 567 intervention on cognition was equivocal, with the need for well-conducted, rigorous clinical trials, such 568 as the ACHIEVE study, to fully understand these relationships. A more recent systematic review by Yeo 569 et al (2022) reported meta-analytic results from 31 observational studies indicating a decreased risk of 570 cognitive decline from the use of hearing aids and cochlear implants. However, the detailed objective 571 and subjective audiological data were not included in all reviewed studies.

572 The work presented here provides comprehensive information about the baseline hearing 573 characteristics of the ACHIEVE study participants and the rigorous methods used to collect these data. 574 Our findings were consistent with what is known clinically and in the literature. The ACHIEVE 575 participants had mild to moderate hearing loss, aligning with the WHO estimation of debilitating hearing 576 loss among older adults (World Health Organization, 2021). The audiological profiles of the ACHIEVE 577 participants are similar to large population-based reports (Humes, 2023; Reed et al., 2023). The degree 578 of trouble listening in background noise, measured with the QuickSIN test, was consistent with similar 579 patient populations, including community-dwelling adults and Veterans (McArdle & Wilson, 2006; Ou 580 & Wetmore, 2020; Ross et al., 2021; Wilson et al., 2007). It was interesting to see statistically 581 significant difference in speech-noise performance across sites, which may be clinically meaningful and 582 warrant future analyses including multivariable modeling to determine the influence of non-auditory variables (e.g., social determinants of health). Most participants had "A Little" to "Moderate" trouble 583 584 hearing and had HHIE-S scores indicating more than a mild-moderate handicap. 585 Associations between audiologic characteristics and self-reported hearing were consistent in 586 direction and magnitude with expectations and with other reports including participants with similar 587 degrees of hearing loss evaluated with similar measures (Cassarly et al., 2019; Humes, 2023). In future 588 analyses, we plan to evaluate if there are any site and recruitment route differences in the correlations 589 between objective measures and self-reported measures. This may be informative and help disentangle 590 the potential site and recruitment differences and inform future study outcome analyses. As of now, our 591 results highlight the benefit of including both measured hearing performance (i.e., pure-tone and speech 592 audiometry) and self-report assessments for the characterization of hearing loss in older adults, which is 593 also consistent with other reports (Humes, 2019), as both objective and subjective measurements are 594 needed to fully understand the influence of hearing loss (Humes, 2023). In sum, objective and subjective 595 baseline audiological characteristics of ACHIEVE study participants align clinically with what would be 596 expected in older adults meeting study inclusion criteria and with the literature. 597 Our study had limitations in that subjective hearing results from the ARIC participant group may 598 not generalize to all adults seeking hearing health care. ARIC participants have a long history of

600 hearing loss, while it is possible that *de novo* participants volunteered for a study with a hearing

volunteering for research and may have agreed to participate even though they did not perceive a

599

601 intervention arm because of self-perceived hearing problems. In addition, because of our long-standing 602 history with ARIC participants, objective hearing loss status was known, so we specifically sought them 603 out to participate in this study. This is unlike the *de novo* participants that presented to the study only 604 after seeing recruitment advertisements. The observation of differences in self-report measures of 605 hearing difficulty and hearing handicap based on recruitment route were not anticipated beforehand; but, 606 also not surprising and similar to other reports that evaluated self-reported hearing ability between those 607 seeking or not seeking hearing heathcare (Humes & Dubno, 2021). Future studies may benefit from 608 inclusion of qualitative data to elucidate motivations for participating in studies such as the ACHIEVE 609 Study. Within the ACHIEVE dataset it will be of interest to determine if there are other non-

610 audiological variables that may influence analyses and interpretations.

611 We consider that the most likely reason there are site differences observed in our analysis is due 612 to having large sample sizes, as the effect sizes were small and most of the post hoc analyses did not 613 reveal any clinically meaningful differences, at least for the objective data. It is well known that large 614 sample sizes can influence statistical findings (Khalilzadeh & Tasci, 2017), and it is important to note 615 that a p-value does not provide any information on the magnitude of the effect and the clinical 616 meaningfulness. Thus, while we reviewed the statistical analyses, we commented on the effect sizes and 617 clinically meaningful differences. Although we suggest that most differences are likely explained by 618 larger sample sizes, we also acknowledge differences could have been due to procedures being 619 conducted differently across sites, as ensuring precision in methods across many sites is very 620 challenging. We consider this highly unlikely considering the extensive quality assurance and quality 621 control protocol designed for the ACHIEVE Study. As described in detail elsewhere (Arnold et al., 622 2021), the comprehensive audiological evaluation was completed by licensed, nationally certified 623 audiologists who completed training in ACHIEVE hearing related protocol administration and

audiological procedures were monitored through direct observation and validating data entry.

Alternatively, it is also possible that the differences observed are true differences and may be related to variables not considered in the current analyses. We acknowledge that are known geographic, socioeconomic, sex-related differences, and many other social determinants of health that can influence audiometric profiles. It will be important to consider these variables in subsequent analyses.

629 Even with potential limitations in mind, knowing the baseline characteristics of the ACHIEVE 630 Study participants, the results reported here allows clinicians to assess how closely the participants 631 match to the patients seen in their own practice, and therefore, they will be important for generalizability 632 or external validity of the trial. The audiologic characteristics of the ACHIEVE Study participants are 633 appropriate for the hearing intervention designed for the trial (Sanchez et al., 2020). With the majority 634 of the participants presenting with moderate hearing loss, word recognition in quiet performance greater 635 than 60% in at least one ear, mild/moderate difficulty hearing speech in the presence of background 636 noise, and moderate self-reported hearing handicap, the technical aspects of the treatment such as ear-637 level worn hearing aids with connective applications to additional hearing assistive devices are known to 638 sufficiently meet the needs of these audiometric characteristics. While it is not within the scope of this 639 manuscript to directly evaluate the appropriateness of the hearing intervention for a population with 640 these hearing characteristics, future analyses will address these questions once the outcomes data are 641 unblinded and available. Primary outcome results were recently released (Lin et al., 2023), with several 642 additional outcomes and analyses expected to follow. It is noteworthy to share we've extended the 643 original study to conduct long-term follow-up. The ACHIEVE Brain Health Follow-Up Study 644 (Clinicaltrials.gov Identifier: NCT05532657) will continue following the ACHIEVE cohort for an 645 additional 3 years (i.e., 6 years total) after randomization to determine the long-term effects of hearing 646 intervention on brain health.

647	The National Institutes of Health requires sharing of scientific data to accelerate biomedical	
648	research discovery, enhance research rigor and reproducibility, and promote data reuse for future	
649	research studies. Our dataset will be publicly available for the scientific community and the details we	
650	provide here may be useful as a template for the level of detail that should be reported in future studies	
651	evaluating the effect of hearing intervention on cognition. These data will also be important for	
652	reference when the ACHIEVE main trial results are reported to contextualize the trial's major findings.	
653		
654	Conclusion	
655	We present a thorough overview of the baseline audiological characteristics from enrolled	
656	ACHIEVE Study participants. These participants were followed for three years with final study visits	
657	occurring in late 2022. The baseline audiometric and hearing-related self-report characteristics of the	
658	ACHIEVE participants will help to inform the planned analyses and serves as one of	
659	several descriptive, genre-specific baseline papers, intended to offer deep complementary information	
660	for interpreting the outcome results. We provide a thorough review of the audiologic results from a	
661	novel randomized trial that will be used to inform the findings on the association between hearing loss	
662	and cognitive decline.	
663		

665 Figure Legends

Figure 1. Air-conduction pure-tone threshold violin plot for the better and poorer ear. The violin plot depicts the distributions of data using density curves with the width of the curve corresponding with the approximate frequency of data points in each region. Our density curves are overlaid on box plots that depict numerical summaries of the data, with a central line marking the median value, the box denoting the 75th and 25th percentiles, lines extending showing the upper and lower fences of the data, and all observations outside the upper and lower fences are plotted individually.

672

Figure 2 a,b. Speech-in-Noise Psychometric function performance. Left panel shows all participants,
while the right panel show functions per study site.

675

Figure 3. Correlation Matrix showing relationship among the audiologic variables. The correlations are
Spearman's Rho, a rank-based correlation, with statistical significance indicated with asterisks (*) and
95% confidence intervals shown in brackets. Also shown are the scatter plots comparing audiologic
data. NOTE: PTA: B = PTA of the Better Ear; QS: SNR L = Quick SIN SNR Loss; WR:P = Word
Recognition of the Poorer Ear; WR:B = Word Recognition of the Better Ear; and, PTA: P is the PTA of
the Poorer Ear.

682

683

684 685

686

Contributor Role Role Definition Authors VAS, MLA, THC, ACE, FRL, Conceptualization Ideas; formulation or evolution of overarching research goals and aims. NSR VAS, MLA, HNN, JFB, SF, Data curation Management activities to annotate (produce metadata), scrub data and maintain research data (including software AMG, CMM, ARH, code, where it is necessary for interpreting the data itself) for initial use and later re-use. **Formal analysis** Application of statistical, mathematical, computational, MLA, VAS, JFB, THC, JRP or other formal techniques to analyze or synthesize study data. **Funding acquisition** Acquisition of the financial support for the project FRL, THC, VAS, KMH, JC, JP, leading to this publication. TM Investigation Conducting a research and investigation process, SF, EA, JH, KH, LS, KT, KW, specifically performing the experiments, or data/evidence KMH, JC, JP, TM, JAS, JAD, collection. NWG, Methodology Development or design of methodology; creation of VAS, MLA, THC, FRL, NSR, models. SF, JFB, HNN HNN, CMM, AMG, ARH, SF, **Project administration** Management and coordination responsibility for the VAS, MLA, THC, LS research activity planning and execution. Resources Provision of study materials, reagents, materials, patients, MLA, HNN, CMM, AMG, VAS, laboratory samples, animals, instrumentation, computing JFB, THC, NSR, FRL, KMH, JC, JP, TM, JAS, JAD, NWG, resources, or other analysis tools. Software Programming, software development; designing JFB, ARH computer programs; implementation of the computer code and supporting algorithms; testing of existing code components.

687 Author Contributions:

Supervision	Oversight and leadership responsibility for the research	VAS, MLA, NSR, AMG, THC,
	activity planning and execution, including mentorship	FRL, KMH, JC, JP, TM, JAS,
	external to the core team.	JAD,
Validation	Verification, whether as a part of the activity or separate,	JFB, ARH, VAS, MLA, SF,
	of the overall replication/reproducibility of	HNN, THC
	results/experiments and other research outputs.	
Visualization	Preparation, creation and/or presentation of the published	JFB, VAS, HNN, THC
	work, specifically visualization/data presentation.	
Writing – original draft	Preparation, creation and/or presentation of the published	VAS, MLA, THC
	work, specifically writing the initial draft (including	
	substantive translation).	
Writing – review &	Preparation, creation and/or presentation of the published	All Authors
editing	work by those from the original research group,	
	specifically critical review, commentary or revision –	
	including pre- or post-publication stages.	

688

689

690 Acknowledgments: The authors thank the staff and participants of the ACHIEVE and ARIC studies for 691 their important contributions. Hearing aids, hearing assistive technologies, and related materials were 692 provided at no cost to the researchers or the participants from Phonak LLC; however, the sponsoring 693 manufacturer did not participate in the design, data collection or analysis, nor the reporting within this 694 manuscript. The Aging and Cognitive Health Evaluation in Elders (ACHIEVE) Study is supported by 695 the National Institute on Aging (NIA) grant R01AG055426, with magnetic brain resonance examination 696 funded by NIA R01AG060502 and with previous pilot study support NIAR34AG046548 and the 697 Eleanor Schwartz Charitable Foundation, in collaboration with the Atherosclerosis Risk in Communities 698 (ARIC) Study, supported by National Heart, Lung and Blood Institute contracts

- 699 (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C,
- 700 HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C).
- 701 Neurocognitive data in ARIC is collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899,
- 702 2U01HL096902, 2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD), and with previous
- 703 brain MRI examinations funded by R01-HL70825 from the NHLBI.
- 704
- 705
- 706 **Data Availability Statement:** Data available upon reasonable request to corresponding author.

707 **References**

- 708 American National Standards Institute. (1999). American National Standards Institute. (1999).
- 709 Permissible ambient noise levels for audiometric test rooms (ANSI S3.1- 1999). In: New York:

710 Author.

- American National Standards Institute. (2018). Specification for audiometers (ANSI S3.6-2018). In: New
 York: Author.
- 713 American Speech-Language-Hearing Association. (1997). *Guidelines for audiologic screening*.
- 714 asha.org/policy
- 715 Arevalo-Rodriguez, I., Smailagic, N., Roqué-Figuls, M., Ciapponi, A., Sanchez-Perez, E., Giannakou, A.,
- 716 Pedraza, O. L., Bonfill Cosp, X., & Cullum, S. (2021). Mini-Mental State Examination (MMSE) for
- the early detection of dementia in people with mild cognitive impairment (MCI). *Cochrane*

718 Database Syst Rev, 7(7), Cd010783. <u>https://doi.org/10.1002/14651858.CD010783.pub3</u>

- 719 ARIC, I. (1989). The Atherosclerosis Risk in Communities (ARIC) study: design and objectives. *Am J*
- 720 *Epidemiol, 129*(4), 687-702.
- Arnold, M. L., Haley, W., Lin, F. R., Faucette, S., Sherry, L., Higuchi, K., Witherell, K., Anderson, E., Reed,
- 722 N. S., Chisolm, T. H., & Sanchez, V. A. (2021). Development, assessment, and monitoring of
- audiologic treatment fidelity in the aging and cognitive health evaluation in elders (ACHIEVE)
- randomised controlled trial. *International Journal of Audiology*, 1-11.
- 725 https://doi.org/10.1080/14992027.2021.1973126
- Atef, R. Z., Michalowsky, B., Raedke, A., Platen, M., Mohr, W., Mühlichen, F., Thyrian, J. R., &
- 727 Hoffmann, W. (2023). Impact of Hearing Aids on Progression of Cognitive Decline, Depression,

- and Quality of Life Among People with Cognitive Impairment and Dementia. J Alzheimers Dis,
- 729 *92*(2), 629-638. https://doi.org/10.3233/jad-220938
- 730 Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and
- 731 cognitive functions across the adult life span: a new window to the study of cognitive aging?
- 732 *Psychology and aging, 12*(1), 12.
- 733 Carhart, R., & Jerger, J. F. (1959). Preferred method for clinical determination of pure-tone thresholds.
- Journal of Speech and Hearing Disorders, 24(4), 330-345.
- 735 Cassarly, C., Matthews, L. J., Simpson, A. N., & Dubno, J. R. (2019). The Revised Hearing Handicap
- 736 Inventory and Screening Tool Based on Psychometric Reevaluation of the Hearing Handicap
- 737 Inventories for the Elderly and Adults. *Ear & amp; Hearing, 41*(1), 95-105.
- 738 <u>https://doi.org/10.1097/aud.000000000000746</u>
- 739 Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences.
- 740 https://doi.org/10.4324/9780203771587
- 741 Dawes, P., Emsley, R., Cruickshanks, K. J., Moore, D. R., Fortnum, H., Edmondson-Jones, M.,
- 742 McCormack, A., & Munro, K. J. (2015). Hearing loss and cognition: The role of hearing aids,
- social isolation, and depression. *PloS One*.
- 744 https://doi.org/https://doi.org/10.1371/journal.pone.0119616
- 745 Deal, J. A., Goman, A. M., Albert, M. S., Arnold, M. L., Burgard, S., Chisolm, T., Couper, D., Glynn, N. W.,
- 746 Gmelin, T., Hayden, K. M., Mosley, T., Pankow, J. S., Reed, N., Sanchez, V. A., Richey Sharrett, A.,
- 747 Thomas, S. D., Coresh, J., & Lin, F. R. (2018). Hearing treatment for reducing cognitive decline:
- 748 Design and methods of the Aging and Cognitive Health Evaluation in Elders randomized

- 749 controlled trial. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 4(1),
- 750 499-507. https://doi.org/10.1016/j.trci.2018.08.007
- 751 Deal, J. A., Goman, A. M., Albert, M. S., Arnold, M. L., Burgard, S., Chisolm, T. H., Couper, D., Glynn, N.
- 752 W., Gmelin, T., Hayden, K. M., Mosley, T., Pankow, J. S., Reed, N. S., Sanchez, V., Sharrett, A. R.,
- 753 Thomas, S. D., Coresh, J., & Lin, F. R. (2018). Hearing treatment for reducing cognitive decline:
- 754 Design and methods of the Aging and Cognitive Health Evaluation in Elders randomized
- 755 controlled trial. Alzheimer's & Dementia: Diagnosis, Assessment, & Disease Monitoring, 4, 499-
- 756 507. <u>https://doi.org/10.1016/j.trci.2018.08.007</u>
- 757 Denham, M. W., Weitzman, R. E., & Golub, J. S. (2022). Hearing Aids and Cochlear Implants in the
- 758 Prevention of Cognitive Decline and Dementia—Breaking Through the Silence. JAMA Neurology.
- 759 <u>https://doi.org/10.1001/jamaneurol.2022.4155</u>
- 760 Dillard, L. K., Walsh, M. C., Merten, N., Cruickshanks, K. J., & Schultz, A. (2022). Prevalence of Self-
- 761 Reported Hearing Loss and Associated Risk Factors: Findings From the Survey of the Health of
- 762 Wisconsin. Journal of Speech, Language, and Hearing Research, 65(5), 2016-2028.
- 763 https://doi.org/doi:10.1044/2022 JSLHR-21-00580
- Golub, J. S., Brickman, A. M., Ciarleglio, A. J., Schupf, N., & Luchsinger, J. A. (2020). Audiometric age-
- related hearing loss and cognition in the Hispanic Community Health Study. *Journals of*
- 766 *Gerontology. Series A: Biological Sciences and Medical Sciences, 75*(3), 552-560.
- 767 https://doi.org/https://doi.org/doi:10.1093/gerona/glz119
- 768 Guthrie, L. A., & Mackersie, C. L. (2009). A comparison of presentation levels to maximize word
- recognition scores. *Journal of the American Academy of Audiology, 20,* 381-390.
- 770 <u>https://doi.org/10.3766/jaaa.20.6.6</u>

- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of
 Statistics, 6, 65–70.
- Hood, J. D. (1960). The principles and practice of bone conduction audiometry: A review of the present
- 774 position. *The Laryngoscope*, *70*(9), 1211-1228.
- 775 https://doi.org/https://doi.org/10.1288/00005537-196009000-00001
- Hughson, W., & Westlake, H. (1944). Manual for program outline for rehabilitation of aural casualties
 both military and civilian. *Trans Am Acad Ophthalmol Otolaryngol*, 48(Suppl), 1-15.
- Humes, L. E. (2019). The World Health Organization's hearing-impairment grading system: an
- evaluation for unaided communication in age-related hearing loss. *International Journal of*
- 780 *Audiology*, *58*(1), 12-20. <u>https://doi.org/10.1080/14992027.2018.1518598</u>
- Humes, L. E. (2023). U.S. Population Data on Hearing Loss, Trouble Hearing, and Hearing-Device Use in
- 782 Adults: National Health and Nutrition Examination Survey, 2011–12, 2015–16, and 2017–20.
- 783 Trends in Hearing, 27, 23312165231160978. <u>https://doi.org/10.1177/23312165231160978</u>
- Humes, L. E., & Dubno, J. R. (2021). A Comparison of the Perceived Hearing Difficulties of Community
- and Clinical Samples of Older Adults. *J Speech Lang Hear Res*, 64(9), 3653-3667.
- 786 https://doi.org/10.1044/2021 jslhr-20-00728
- 787 Hurley, R. M., & Sells, J. P. (2003). An abbreviated word recognition protocol based on item difficulty.
- 788 *Ear and Hearing*, 24(2), 111-118. <u>https://doi.org/10.1097/01.AUD.0000058113.56906.0D</u>
- 789 Khalilzadeh, J., & Tasci, A. D. A. (2017). Large sample size, significance level, and the effect size:
- 790 Solutions to perils of using big data for academic research. *Tourism Management, 62,* 89-96.
- 791 https://doi.org/https://doi.org/10.1016/j.tourman.2017.03.026

- Killion, M. C., Niquette, P. A., Gudmundsen, G. I., Revit, L. J., & Banarjee, S. (2003). Development of a
- 793 quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and
- hearing-impaired listeners. *Journal of the Acoustical Society of America*, 116(4), 2395-2405.
- 795 <u>https://doi.org/10.1121/1.1784440</u>
- Killion, M. C., Niquette, P. A., Gudmundsen, G. I., Revit, L. J., & Banerjee, S. (2004). Development of a
- 797 quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and
- hearing-impaired listeners. *The Journal of the Acoustical Society of America*, 116(4), 2395-2405.
- 799 Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. *Journal of the*
- 800 American Statistical Association, **47**, 583–621.
- Liang, Z., Li, A., Xu, Y., Qian, X., & Gao, X. (2021). Hearing Loss and Dementia: A Meta-Analysis of
- 802 Prospective Cohort Studies. *Front Aging Neurosci, 13,* 695117.
- 803 <u>https://doi.org/10.3389/fnagi.2021.695117</u>
- Lin, F. R. (2011). Hearing loss and cognition among older adults in the United States. *Journals of*
- 805 Gerontology. Series A: Biological Sciences and Medical Sciences, 66A(10), 1131-1136.
- 806 https://doi.org/https://doi.org/10.1093/gerona/glr115
- Lin, F. R., & Albert, M. (2014). Hearing loss and dementia who is listening? Aging & Mental Health,
- 808 *18*(6), 671-673. <u>https://doi.org/10.1080/13607863.2014.915924</u>
- Lin, F. R., Pike, J. R., Albert, M. S., Arnold, M., Burgard, S., Chisolm, T., Couper, D., Deal, J. A., Goman, A.
- 810 M., Glynn, N. W., Gmelin, T., Gravens-Mueller, L., Hayden, K. M., Huang, A. R., Knopman, D.,
- 811 Mitchell, C. M., Mosley, T., Pankow, J. S., Reed, N. S., ... Coresh, J. (2023). Hearing intervention
- 812 versus health education control to reduce cognitive decline in older adults with hearing loss in

813 the USA (ACHIEVE): a multicentre, randomised controlled trial. *The Lancet*.

814 <u>https://doi.org/10.1016/s0140-6736(23)01406-x</u>

- Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A.,
- 816 Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R.,
- 817 Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., . . . Mukadam, N. (2020). Dementia
- 818 prevention, intervention, and care: 2020 report of the Lancet Commission. *The Lancet*,

819 *396*(10248), 413-446. <u>https://doi.org/10.1016/s0140-6736(20)30367-6</u>

- Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D., Ballard, C., Banerjee,
- 821 S., Burns, A., Cohen-Mansfield, J., Cooper, C., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C.,
- Larson, E. B., Ritchie, K., Rockwood, K., Sampson, E. L., . . . Mukadam, N. (2017). Dementia
- prevention, intervention, and care. *The Lancet*, *390*(10113), 2673-2734.
- 824 <u>https://doi.org/10.1016/s0140-6736(17)31363-6</u>
- Loughrey, D. G. (2022). Is age-related hearing loss a potentially modifiable risk factor for dementia?
- 826 The Lancet Healthy Longevity, 3(12), e805-e806.
- 827 https://doi.org/https://doi.org/10.1016/S2666-7568(22)00252-5
- Marinelli, J. P., Lohse, C. M., Fussell, W. L., Petersen, R. C., Reed, N. S., Machulda, M. M., Vassilaki, M.,
- 829 & Carlson, M. L. (2022). Association between hearing loss and development of dementia using
- 830 formal behavioural audiometric testing within the Mayo Clinic Study of Aging (MCSA): a
- prospective population-based study. *The Lancet Healthy Longevity*, *3*(12), e817-e824.
- 832 <u>https://doi.org/10.1016/s2666-7568(22)00241-0</u>

- Marrone, N., Ingram, M., Bischoff, K., Burgen, E., Carvajal, S. C., & Bell, M. L. (2019). Self-reported
- hearing difficulty and its association with general, cognitive, and psychosocial health in the
- 835 state of Arizona, 2015. *BMC Public Health*, *19*(1). <u>https://doi.org/10.1186/s12889-019-7175-5</u>
- 836 McArdle, R. A., & Wilson, R. H. (2006). Homogeneity of the 18 QuickSIN(TM) lists. Journal of the
- 837 *American Academy of Audiology*, 17, 157-167. <u>https://doi.org/10.3766/jaaa.17.3.2</u>
- McShefferty, D., Whitmer, W. M., & Akeroyd, M. A. (2015). The Just-Noticeable Difference in Speechto-Noise Ratio. *Trends in Hearing*, *19*(0), 233121651557231.
- 840 <u>https://doi.org/10.1177/2331216515572316</u>
- 841 Mentz, R. J., Bethel, M. A., Gustavson, S., Thompson, V. P., Pagidipati, N. J., Buse, J. B., Chan, J. C., Iqbal,
- N., Maggioni, A. P., Marso, S. P., Ohman, P., Poulter, N., Ramachandran, A., Zinman, B.,
- 843 Hernandez, A. F., & Holman, R. R. (2017). Baseline characteristics of patients enrolled in the
- 844 Exenatide Study of Cardiovascular Event Lowering (EXSCEL). *American Heart Journal, 187,* 1-9.
- 845 <u>https://doi.org/10.1016/j.ahj.2017.02.005</u>
- 846 Merten, N., Fischer, M. E., Tweed, T. S., Breteler, M. M. B., & Cruickshanks, K. J. (2020). Associations of
- 847 hearing sensitivity, higher-order auditory processing, and cognition over time in middle-aged
- 848 adults. Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 75(3), 545-
- 849 551. https://doi.org/https://doi.org/10.1093/gerona/glz189
- 850 Newman, A. B., Bayles, C. M., Milas, C. N., McTigue, K., Williams, K., Robare, J. F., Taylor, C. A., Albert, S.
- 851 M., & Kuller, L. H. (2010). The 10 keys to healthy aging: findings from an innovative prevention
- program in the community. *Journal of Aging and Health*, 22(5), 547-566.

- 853 Ou, H., & Wetmore, M. (2020). Development of a Revised Performance-Perceptual Test Using Quick
- 854 Speech in Noise Test Material and Its Norms. *Journal of the American Academy of Audiology*,
- 855 *31*(03), 176-184. <u>https://doi.org/10.3766/jaaa.18059</u>
- Pfeffer, M. A., Burdmann, E. A., Chen, C.-Y., Cooper, M. E., de Zeeuw, D., Eckardt, K.-U., Ivanovich, P.,
- 857 Kewalramani, R., Levey, A. S., Lewis, E. F., McGill, J., McMurray, J. J. V., Parfrey, P., Parving, H.-
- 858 H., Remuzzi, G., Singh, A. K., Solomon, S. D., Toto, R., & Uno, H. (2009). Baseline Characteristics
- in the Trial to Reduce Cardiovascular Events With Aranesp Therapy (TREAT). American Journal
- 860 *of Kidney Diseases*, 54(1), 59-69. <u>https://doi.org/https://doi.org/10.1053/j.ajkd.2009.04.008</u>
- Powell, D. S., Oh, E. S., Lin, F. R., & Deal, J. A. (2021). Hearing Impairment and Cognition in an Aging
- 862 World. Journal of the Association for Research in Otolaryngology, 22(4), 387-403.
- 863 <u>https://doi.org/10.1007/s10162-021-00799-y</u>
- Reed, N. S., Garcia-Morales, E. E., Myers, C., Huang, A. R., Ehrlich, J. R., Killeen, O. J., Hoover-Fong, J. E.,
- Lin, F. R., Arnold, M. L., Oh, E. S., Schrack, J. A., & Deal, J. A. (2023). Prevalence of Hearing Loss
- 866 and Hearing Aid Use Among US Medicare Beneficiaries Aged 71 Years and Older. JAMA Network
- 867 *Open, 6*(7), e2326320. <u>https://doi.org/10.1001/jamanetworkopen.2023.26320</u>
- 868 Ross, B., Dobri, S., & Schumann, A. (2021). Psychometric function for speech-in-noise tests accoutns for
- 869 word-recognition deficits in older listeners. *Journal of the Acoustical Society of America*, 149.
- 870 https://doi.org/10.1121/10.0003956
- 871 Sanchez, V. A., Arnold, M. L., Reed, N. S., Oree, P. H., Matthews, C. R., Clock Eddins, A., Lin, F. R., &
- 872 Chisolm, T. H. (2020). The Hearing Intervention for the Aging and Cognitive Health Evaluation in
- 873 Elders Randomized Control Trial: Manualization and Feasibility Study. *Ear and Hearing*, 41(5),
- 874 1333-1348. <u>https://doi.org/10.1097/aud.00000000000858</u>

- 875 Stevens, G., Flaxman, S., Brunskill, E., Mascarenhas, M., Mathers, C. D., Finucane, M., & Group, o. b. o.
- t. G. B. o. D. H. L. E. (2011). Global and regional hearing impairment prevalence: an analysis of
- 42 studies in 29 countries. *European Journal of Public Health*, 23(1), 146-152.
- 878 https://doi.org/10.1093/eurpub/ckr176
- 879 Studebaker, G. A. (1967). Clinical Masking of the Nontest Ear. Journal of Speech and Hearing Disorders,
- 880 32(4), 360-371. <u>https://doi.org/doi:10.1044/jshd.3204.360</u>
- Thornton, A. R., & Raffin, M. J. M. (1978). Speech-Discrimination Scores Modeled as a Binomial
- 882 Variable. Journal of Speech and Hearing Research, 21(3), 507-518.
- 883 <u>https://doi.org/doi:10.1044/jshr.2103.507</u>
- Ventry, I. M., & Weinstein, B. E. (1983). Idenification of elderly people with hearing problems. *ASHA 25*,
 37-42.
- Walker, G., Dillon, H., & Byme, D. (1984). Sound Field Audiometry: Recommended Stimuli and
- 887 Procedures. *Ear and Hearing*, 5(1), 13-21. <u>https://journals.lww.com/ear-</u>
- 888 hearing/Fulltext/1984/01000/Sound Field Audiometry Recommended Stimuli and.5.aspx
- 889 Wayne, R. V., & Johnsrude, I. S. (2015). A review of causal mechanisms underlying the link between
- age-related hearing loss and cognitive decline. *Ageing Research Reviews*, 23, 154-166.
- 891 https://doi.org/https://doi.org/10.1016/j.arr.2015.06.002
- West, J. S., Smith, S. L., & Dupre, M. E. (2022). Self-reported hearing loss, hearing aid use, and cognitive
- function among U.S. older adults. *International Journal of Population Studies*, 8(1), 17-26.
- 894 <u>https://doi.org/10.18063/ijps.v8i1.1308</u>
- Wilson, R. H., McArdle, R. A., & Smith, S. L. (2007). An Evaluation of the BKB-SIN, HINT, QuickSIN, and
- 896 WIN Materials on Listeners With Normal Hearing and Listeners With Hearing Loss. Journal of

- 897 *Speech, Language, and Hearing Research, 50*(4), 844-856. <u>https://doi.org/doi:10.1044/1092-</u>
- 898 <u>4388(2007/059</u>)
- 899 World Health Organization. (2021). World report on hearing. Geneva: World Health Organization; 2021.
- 900 Licence: CC
- 901 BY-NC-SA 3.0 IGO.
- 902 Wright, J. D., Folsom, A. R., Coresh, J., Sharrett, A. R., Couper, D., Wagenknecht, L. E., Mosley, T. H.,
- 903 Ballantyne, C. M., Boerwinkle, E. A., Rosamond, W. D., & Heiss, G. (2021). The ARIC
- 904 (Atherosclerosis Risk In Communities) Study: JACC Focus Seminar 3/8. Journal of the American
- 905 *College of Cardiology*, 77(23), 2939-2959.
- 906 https://doi.org/https://doi.org/10.1016/j.jacc.2021.04.035
- 907 Yeo, B. S. Y., Song, H. J. J. M. D., Toh, E. M. S., Ng, L. S., Ho, C. S. H., Ho, R., Merchant, R. A., Tan, B. K. J.,
- 908 & Loh, W. S. (2022). Association of Hearing Aids and Cochlear Implants With Cognitive Decline
- 909 and Dementia. JAMA Neurology. https://doi.org/10.1001/jamaneurol.2022.4427
- 910
- 911
- 912

Page 45 of 45 | Hearing Characteristics in ACHIEVE