13,637 research outputs found
On the physical processes which lie at the bases of time variability of GRBs
The relative-space-time-transformation (RSTT) paradigm and the interpretation
of the burst-structure (IBS) paradigm are applied to probe the origin of the
time variability of GRBs. Again GRB 991216 is used as a prototypical case,
thanks to the precise data from the CGRO, RXTE and Chandra satellites. It is
found that with the exception of the relatively inconspicuous but
scientifically very important signal originating from the initial ``proper
gamma ray burst'' (P-GRB), all the other spikes and time variabilities can be
explained by the interaction of the accelerated-baryonic-matter pulse with
inhomogeneities in the interstellar matter. This can be demonstrated by using
the RSTT paradigm as well as the IBS paradigm, to trace a typical spike
observed in arrival time back to the corresponding one in the laboratory time.
Using these paradigms, the identification of the physical nature of the time
variablity of the GRBs can be made most convincingly. It is made explicit the
dependence of a) the intensities of the afterglow, b) the spikes amplitude and
c) the actual time structure on the Lorentz gamma factor of the
accelerated-baryonic-matter pulse. In principle it is possible to read off from
the spike structure the detailed density contrast of the interstellar medium in
the host galaxy, even at very high redshift.Comment: 11 pages, 5 figure
The EMBH model in GRB 991216 and GRB 980425
This is a summary of the two talks presented at the Rome GRB meeting by C.L.
Bianco and R. Ruffini. It is shown that by respecting the Relative Space-Time
Transformation (RSTT) paradigm and the Interpretation of the Burst Structure
(IBS) paradigm, important inferences are possible: a) in the new physics
occurring in the energy sources of GRBs, b) on the structure of the bursts and
c) on the composition of the interstellar matter surrounding the source.Comment: 8 pages, 3 figures, in the Proceedings of the "Third Rome Workshop on
Gamma-Ray Bursts in the Afterglow Era", 17-20 September 2002, M. Feroci, F.
Frontera, N. Masetti, L. Piro (editors
Kaon–Nucleon Interaction Studied by Kaonic X Rays with DEAR at DAΦNE
The scientific program and the experimental setup of the DEAR (DAΦNE Exotic Atom Research) experiment on the new ϕ-factory DAΦNE of Laboratori Nazionali di Frascati, are presented. The objective of DEAR is to perform a 1% measurement of the shift, due to the strong interaction, of the K_α line of kaonic hydrogen and a similar precision measurement, performed for the first time, on kaonic deuterium. The aim is to investigate the low-energy KN physics and to understand SU(3) chiral symmetry breaking. DEAR looks as the major effort ever performed to study low energy KN interaction, capable to produce a real breakthrough in the field
Pair plasma relaxation time scales
By numerically solving the relativistic Boltzmann equations, we compute the
time scale for relaxation to thermal equilibrium for an optically thick
electron-positron plasma with baryon loading. We focus on the time scales of
electromagnetic interactions. The collisional integrals are obtained directly
from the corresponding QED matrix elements. Thermalization time scales are
computed for a wide range of values of both the total energy density (over 10
orders of magnitude) and of the baryonic loading parameter (over 6 orders of
magnitude). This also allows us to study such interesting limiting cases as the
almost purely electron-positron plasma or electron-proton plasma as well as
intermediate cases. These results appear to be important both for laboratory
experiments aimed at generating optically thick pair plasmas as well as for
astrophysical models in which electron-positron pair plasmas play a relevant
role.Comment: Phys. Rev. E, in pres
GRB 970228 Within the EMBH Model
We consider the gamma-ray burst of 1997 February 28 (GRB 970228) within the
ElectroMagnetic Black Hole (EMBH) model. We first determine the value of the
two free parameters that characterize energetically the GRB phenomenon in the
EMBH model, that is to say the dyadosphere energy,
ergs, and the baryonic remnant mass in units of ,
. Having in this way estimated the
energy emitted during the beam-target phase, we evaluate the role of the
InterStellar Medium (ISM) number density (n) and of the ratio between the effective emitting area and the total surface area of the GRB
source, in reproducing the observed profiles of the GRB 970228 prompt emission
and X-ray (2-10 keV energy band) afterglow. The importance of the ISM
distribution three-dimensional treatment around the central black hole is also
stressed in this analysis.Comment: 4 pages, 1 figure, to appear in the Proceedings of the Los Alamos
"Gamma Ray Burst Symposium" in Santa Fe, New Mexico, September 8-12 2003 (AIP
Conf. Ser.), CHAPTER: GRB Connection to Supernova
Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices
Plasma nitriding was applied to ferritic stainless steel substrates to improve their performances as interconnects for solid oxide fuel cell devices. The samples underwent electrical conductivity test and SEM/EDS, TEM/EDS, environmental-SEM analyses. The first stages of corrosion were recorded in-situ with the e-SEM. Nitriding is effective in limiting the undesired chromium evaporation from the steel substrates and accelerates the corrosion kinetics, but its influence of the electrical conductivity is ambiguous. No intergranular corrosion is found in the steel substrate after long time operation. Nitriding helps commercially competitive porous coating to improve chromium retention properties of metal interconnects
Endotaxial Si nanolines in Si(001):H
We present a detailed study of the structural and electronic properties of a
self-assembled silicon nanoline embedded in the H-terminated silicon (001)
surface, known as the Haiku stripe. The nanoline is a perfectly straight and
defect free endotaxial structure of huge aspect ratio; it can grow micrometre
long at a constant width of exactly four Si dimers (1.54nm). Another remarkable
property is its capacity to be exposed to air without suffering any
degradation. The nanoline grows independently of any step edges at tunable
densities, from isolated nanolines to a dense array of nanolines. In addition
to these unique structural characteristics, scanning tunnelling microscopy and
density functional theory reveal a one-dimensional state confined along the
Haiku core. This nanoline is a promising candidate for the long sought after
electronic solid-state one-dimensional model system to explore the fascinating
quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure
- …