36,030 research outputs found

    Reconfigurable Security: Edge Computing-based Framework for IoT

    Full text link
    In various scenarios, achieving security between IoT devices is challenging since the devices may have different dedicated communication standards, resource constraints as well as various applications. In this article, we first provide requirements and existing solutions for IoT security. We then introduce a new reconfigurable security framework based on edge computing, which utilizes a near-user edge device, i.e., security agent, to simplify key management and offload the computational costs of security algorithms at IoT devices. This framework is designed to overcome the challenges including high computation costs, low flexibility in key management, and low compatibility in deploying new security algorithms in IoT, especially when adopting advanced cryptographic primitives. We also provide the design principles of the reconfigurable security framework, the exemplary security protocols for anonymous authentication and secure data access control, and the performance analysis in terms of feasibility and usability. The reconfigurable security framework paves a new way to strength IoT security by edge computing.Comment: under submission to possible journal publication

    Assessing microstructures of pyrrhotites in basalts by multifractal analysis

    Get PDF
    Understanding and describing spatial arrangements of mineral particles and determining the mineral distribution structure are important to model the rock-forming process. Geometric properties of individual mineral particles can be estimated from thin sections, and different models have been proposed to quantify the spatial complexity of mineral arrangement. The Gejiu tin-polymetallic ore-forming district, located in Yunnan province, southwestern China, is chosen as the study area. The aim of this paper is to apply fractal and multifractal analysis to quantify distribution patterns of pyrrhotite particles from twenty-eight binary images obtained from seven basalt segments and then to discern the possible petrological formation environments of the basalts based on concentrations of trace elements. The areas and perimeters of pyrrhotite particles were measured for each image. Perimeter-area fractal analysis shows that the perimeter and area of pyrrhotite particles follow a power-law relationship, which implies the scale-invariance of the shapes of the pyrrhotites. Furthermore, the spatial variation of the pyrrhotite particles in space was characterized by multifractal analysis using the method of moments. The results show that the average values of the area-perimeter exponent (<i>D<sub>AP</sub></i>), the width of the multifractal spectra (Δ(<i>D(0)−D(2)</i>) and Δ(<i>D(q</i><sub>min</sub>)−<i>D(q</i><sub>max</sub>))) and the multifractality index (τ"(1)) for the pyrrhotite particles reach their minimum in the second basalt segment, which implies that the spatial arrangement of pyrrhotite particles in Segment 2 is less heterogeneous. Geochemical trace element analysis results distinguish the second basalt segment sample from other basalt samples. In this aspect, the fractal and multifractal analysis may provide new insights into the quantitative assessment of mineral microstructures which may be closely associated with the petrogenesis as shown by the bulk-rock geochemical analysis

    Photon-meson transition form factors of light pseudoscalar mesons

    Full text link
    The photon-meson transition form factors of light pseudoscalar mesons π0\pi ^{0}, η\eta, and η\eta ^{\prime} are systematically calculated in a light-cone framework, which is applicable as a light-cone quark model at low Q2Q^{2} and is also physically in accordance with the light-cone pQCD approach at large Q2Q^{2}. The calculated results agree with the available experimental data at high energy scale. We also predict the low Q2Q^{2} behaviors of the photon-meson transition form factors of π0\pi ^{0}, η\eta and η\eta ^{\prime }, which are measurable in e+A(Nucleus)e+A+Me+A({Nucleus})\to e+A+M process via Primakoff effect at JLab and DESY.Comment: 22 Latex pages, 7 figures, Version to appear in PR

    Field Scanner Design for MUSTANG of the Green Bank Telescope

    Full text link
    MUSTANG is a bolometer camera for the Green Bank Telescope (GBT) working at a frequency of 90 GHz. The detector has a field of view of 40 arcseconds. To cancel out random emission change from atmosphere and other sources, requires a fast scanning reflecting system with a few arcminute ranges. In this paper, the aberrations of an off-axis system are reviewed. The condition for an optimized system is provided. In an optimized system, as additional image transfer mirrors are introduced, new aberrations of the off-axis system may be reintroduced, resulting in a limited field of view. In this paper, different scanning mirror arrangements for the GBT system are analyzed through the ray tracing analysis. These include using the subreflector as the scanning mirror, chopping a flat mirror and transferring image with an ellipse mirror, and chopping a flat mirror and transferring image with a pair of face-to-face paraboloid mirrors. The system analysis shows that chopping a flat mirror and using a well aligned pair of paraboloids can generate the required field of view for the MUSTUNG detector system, while other systems all suffer from larger off-axis aberrations added by the system modification. The spot diagrams of the well aligned pair of paraboloids produced is only about one Airy disk size within a scanning angle of about 3 arcmin.Comment: 7 pages, 9 figure
    corecore