7,290 research outputs found
Dynamics of coreless vortices and rotation-induced dissipation peak in superfluid films on rotating porous substrates
We analyze dynamics of 3D coreless vortices in superfluid films covering
porous substrates. The 3D vortex dynamics is derived from the 2D dynamics of
the film. The motion of a 3D vortex is a sequence of jumps between neighboring
substrate cells, which can be described, nevertheless, in terms of
quasi-continuous motion with average vortex velocity. The vortex velocity is
derived from the dissociation rate of vortex-antivortex pairs in a 2D film,
which was developed in the past on the basis of the Kosterlitz-Thouless theory.
The theory explains the rotation-induced dissipation peak in torsion-oscillator
experiments on He films on rotating porous substrates and can be used in
the analysis of other phenomena related to vortex motion in films on porous
substrates.Comment: 8 pages, 3 figures submitted to Phys. Rev.
Carrier relaxation due to electron-electron interaction in coupled double quantum well structures
We calculate the electron-electron interaction induced energy-dependent
inelastic carrier relaxation rate in doped semiconductor coupled double quantum
well nanostructures within the two subband approximation at zero temperature.
In particular, we calculate, using many-body theory, the imaginary part of the
full self-energy matrix by expanding in the dynamically RPA screened Coulomb
interaction, obtaining the intrasubband and intersubband electron relaxation
rates in the ground and excited subbands as a function of electron energy. We
separate out the single particle and the collective excitation contributions,
and comment on the effects of structural asymmetry in the quantum well on the
relaxation rate. Effects of dynamical screening and Fermi statistics are
automatically included in our many body formalism rather than being
incorporated in an ad-hoc manner as one must do in the Boltzman theory.Comment: 26 pages, 5 figure
Nonlinear screening and stopping power in two-dimensional electron gases
We have used density functional theory to study the nonlinear screening
properties of a two-dimensional (2D) electron gas. In particular, we consider
the screening of an external static point charge of magnitude Z as a function
of the distance of the charge from the plane of the gas. The self-consistent
screening potentials are then used to determine the 2D stopping power in the
low velocity limit based on the momentum transfer cross-section. Calculations
as a function of Z establish the limits of validity of linear and quadratic
response theory calculations, and show that nonlinear screening theory already
provides significant corrections in the case of protons. In contrast to the 3D
situation, we find that the nonlinearly screened potential supports a bound
state even in the high density limit. This behaviour is elucidated with the
derivation of a high density screening theorem which proves that the screening
charge can be calculated perturbatively in the high density limit for arbitrary
dimensions. However, the theorem has particularly interesting implications in
2D where, contrary to expectations, we find that perturbation theory remains
valid even when the perturbing potential supports bound states.Comment: 23 pages, 15 figures in RevTeX
The density, the cosmic microwave background and the proton-to-electron mass ratio in a cloud at redshift 0.9
Based on measurements with the Effelsberg 100-m telescope, a multi-line study of molecular species is presented toward the gravitational lens system PKS 1830–211, which is by far the best known target to study dense cool gas in absorption at intermediate redshift. Determining average radial velocities and performing Large Velocity Gradient radiative transfer calculations, the aims of this study are (1) to determine the density of the gas, (2) to constrain the temperature of the cosmic microwave background (CMB), and (3) to evaluate the proton-to-electron mass ratio at redshift z ∼ 0.89. Analyzing data from six rotational HC_3N transitions (this includes the J = 7 ← 6 line, which is likely detected for the first time in the interstellar medium) we obtain n(H_2) ∼ 2600 cm^(−3) for the gas density of the south-western absorption component, assuming a background source covering factor, which is independent of frequency. With a possibly more realistic frequency dependence proportional to ν^(0.5) (the maximal exponent permitted by observational boundary conditions), n(H2) ∼ 1700 cm^(−3). Again toward the south-western source, excitation temperatures of molecular species with optically thin lines and higher rotational constants are, on average, consistent with the expected temperature of the cosmic microwave background, T^(CMB) = 5.14 K. However, individually, there is a surprisingly large scatter which far surpasses expected uncertainties. A comparison of CS J = 1 ← 0 and 4 ← 3 optical depths toward the weaker north-western absorption component results in T_(ex) = 11 K and a 1-σ error of 3 K. For the main component, a comparison of velocities determined from ten optically thin NH_3 inversion lines with those from five optically thin rotational transitions of HC_3N, observed at similar frequencies, constrains potential variations of the proton-to-electron mass ratio μ to Δμ/μ < 1.4 × 10^(−6) with 3-σ confidence. Also including optically thin rotational lines from other molecular species, it is emphasized that systematic errors are ΔV < 1 kms^(−1), corresponding to Δμ/μ < 1.0 × 10^(−6)
Interlayer tunneling in double-layer quantum Hall pseudo-ferromagnets
We show that the interlayer tunneling I--V in double-layer quantum Hall
states displays a rich behavior which depends on the relative magnitude of
sample size, voltage length scale, current screening, disorder and thermal
lengths. For weak tunneling, we predict a negative differential conductance of
a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic
field splits this zero-bias peak, leading instead to a ``derivative'' feature
at , which gives a direct measure of
the dispersion of the Goldstone mode corresponding to the spontaneous symmetry
breaking of the double-layer Hall state.Comment: 4 pgs. RevTex, submitted to Phys. Rev. Let
Inelastic Coulomb scattering rates due to acoustic and optical plasmon modes in coupled quantum wires
We report a theoretical study on the inelastic Coulomb scattering rate of an
injected electron in two coupled quantum wires in quasi-one-dimensional doped
semiconductors. Two peaks appear in the scattering spectrum due to the optical
and the acoustic plasmon scattering in the system. We find that the scattering
rate due to the optical plasmon mode is similar to that in a single wire but
the acoustic plasmon scattering depends crucially on its dispersion relation at
small . Furthermore, the effects of tunneling between the two wires are
studied on the inelastic Coulomb scattering rate. We show that a weak tunneling
can strongly affect the acoustic plasmon scattering.Comment: 6 Postscript figure
Comment on ``Energy Dependence of Electron Lifetime in Graphite Observed with Femtosecond Photoemission Spectroscopy'' (PRL 76, 483(1996).)
We comment on the theoretical interpretations applied to a recent experiment
on electron lifetime in graphite. We point out that the acoustic-plasmon
excitations in a layered two-dimensional electron system do not produce a
linear energy dependence for the Coulomb scattering rate.Comment: 4 pages, RevTex, no figures. Also available at
http://www-cmg.physics.umd.edu/~lzheng/ . Phys. Rev. Lett. (to appear
Compact Resolved Ejecta in the Nearest Tidal Disruption Event
Tidal disruption events (TDEs) occur when a star or sub-stellar object passes
close enough to a galaxy's supermassive black hole to be disrupted by tidal
forces. NGC 4845 (d=17 Mpc) was host to a TDE, IGR J12580+0134, detected in
November 2010. Its proximity offers us a unique close-up of the TDE and its
aftermath. We discuss new Very Long Baseline Array (VLBA) and Karl G. Jansky
Very Large Array (JVLA) observations, which show that the radio flux from the
active nucleus created by the TDE has decayed in a manner consistent with
predictions from a jet-circumnuclear medium interaction model. This model
explains the source's broadband spectral evolution, which shows a spectral peak
that has moved from the submm (at the end of 2010) to GHz radio frequencies (in
2011-2013) to <1 GHz in 2015. The milliarcsecond-scale core is circularly
polarized at 1.5 GHz but not at 5 GHz, consistent with the model. The VLBA
images show a complex structure at 1.5 GHz that includes an east west extension
~40 milliarcsec (3 pc) long as well as a resolved component 52 milliarcsec (4.1
pc) northwest of the flat-spectrum core, which is all that can be seen at 5
GHz. If ejected in 2010, the NW component must have had v=0.96 c over five
years. However, this is unlikely, as our model suggests strong deceleration to
speeds < 0.5c within months and a much smaller, sub-parsec size. In this
interpretation, the northwest component could have either a non-nuclear origin
or be from an earlier event.Comment: 12 pages, 8 figures, ApJ, in press; v2 includes error corrections and
slight additions to the analysi
Evidence for a Goldstone Mode in a Double Layer Quantum Hall System
The tunneling conductance between two parallel 2D electron systems has been
measured in a regime of strong interlayer Coulomb correlations. At total Landau
level filling the tunnel spectrum changes qualitatively when the
boundary separating the compressible phase from the ferromagnetic quantized
Hall state is crossed. A huge resonant enhancement replaces the strongly
suppressed equilibrium tunneling characteristic of weakly coupled layers. The
possible relationship of this enhancement to the Goldstone mode of the broken
symmetry ground state is discussed.Comment: 4 pages, 3 figures, 2 minor typeos fixe
Strong Correlation to Weak Correlation Phase Transition in Bilayer Quantum Hall Systems
At small layer separations, the ground state of a nu=1 bilayer quantum Hall
system exhibits spontaneous interlayer phase coherence and has a
charged-excitation gap E_g. The evolution of this state with increasing layer
separation d has been a matter of controversy. In this letter we report on
small system exact diagonalization calculations which suggest that a single
phase transition, likely of first order, separates coherent incompressible (E_g
>0) states with strong interlayer correlations from incoherent compressible
states with weak interlayer correlations. We find a dependence of the phase
boundary on d and interlayer tunneling amplitude that is in very good agreement
with recent experiments.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let
- …