435 research outputs found
Metal-insulator transitions in anisotropic 2d systems
Several phenomena related to the critical behaviour of non-interacting
electrons in a disordered 2d tight-binding system with a magnetic field are
studied. Localization lengths, critical exponents and density of states are
computed using transfer matrix techniques. Scaling functions of isotropic
systems are recovered once the dimension of the system in each direction is
chosen proportional to the localization length. It is also found that the
critical point is independent of the propagation direction, and that the
critical exponents for the localization length for both propagating directions
are equal to that of the isotropic system (approximately 7/3). We also
calculate the critical value of the scaling function for both the isotropic and
the anisotropic system. It is found that the isotropic value equals the
geometric mean of the two anisotropic values. Detailed numerical studies of the
density of states for the isotropic system reveals that for an appreciable
amount of disorder the critical energy is off the band center.Comment: 6 pages RevTeX, 6 figures included, submitted to Physical Review
Levitation of quantum Hall critical states in a lattice model with spatially correlated disorder
The fate of the current carrying states of a quantum Hall system is
considered in the situation when the disorder strength is increased and the
transition from the quantum Hall liquid to the Hall insulator takes place. We
investigate a two-dimensional lattice model with spatially correlated disorder
potentials and calculate the density of states and the localization length
either by using a recursive Green function method or by direct diagonalization
in connection with the procedure of level statistics. From the knowledge of the
energy and disorder dependence of the localization length and the density of
states (DOS) of the corresponding Landau bands, the movement of the current
carrying states in the disorder--energy and disorder--filling-factor plane can
be traced by tuning the disorder strength.
We show results for all sub-bands, particularly the traces of the Chern and
anti-Chern states as well as the peak positions of the DOS. For small disorder
strength we recover the well known weak levitation of the critical states,
but we also reveal, for larger , the strong levitation of these states
across the Landau gaps without merging. We find the behavior to be similar for
exponentially, Gaussian, and Lorentzian correlated disorder potentials. Our
study resolves the discrepancies of previously published work in demonstrating
the conflicting results to be only special cases of a general lattice model
with spatially correlated disorder potentials.
To test whether the mixing between consecutive Landau bands is the origin of
the observed floating, we truncate the Hilbert space of our model Hamiltonian
and calculate the behavior of the current carrying states under these
restricted conditions.Comment: 10 pages, incl. 13 figures, accepted for publication in PR
Metal-insulator transition in two-dimensional disordered systems with power-law transfer terms
We investigate a disordered two-dimensional lattice model for noninteracting
electrons with long-range power-law transfer terms and apply the method of
level statistics for the calculation of the critical properties. The
eigenvalues used are obtained numerically by direct diagonalization. We find a
metal-insulator transition for a system with orthogonal symmetry. The exponent
governing the divergence of the correlation length at the transition is
extracted from a finite size scaling analysis and found to be . The critical eigenstates are also analyzed and the distribution of the
generalized multifractal dimensions is extrapolated.Comment: 4 pages with 4 figures, printed version: PRB, Rapid Communication
Ballistic transport in random magnetic fields with anisotropic long-ranged correlations
We present exact theoretical results about energetic and dynamic properties
of a spinless charged quantum particle on the Euclidean plane subjected to a
perpendicular random magnetic field of Gaussian type with non-zero mean. Our
results refer to the simplifying but remarkably illuminating limiting case of
an infinite correlation length along one direction and a finite but strictly
positive correlation length along the perpendicular direction in the plane.
They are therefore ``random analogs'' of results first obtained by A. Iwatsuka
in 1985 and by J. E. M\"uller in 1992, which are greatly esteemed, in
particular for providing a basic understanding of transport properties in
certain quasi-two-dimensional semiconductor heterostructures subjected to
non-random inhomogeneous magnetic fields
Energy level dynamics in systems with weakly multifractal eigenstates: equivalence to 1D correlated fermions
It is shown that the parametric spectral statistics in the critical random
matrix ensemble with multifractal eigenvector statistics are identical to the
statistics of correlated 1D fermions at finite temperatures. For weak
multifractality the effective temperature of fictitious 1D fermions is
proportional to (1-d_{n})/n, where d_{n} is the fractal dimension found from
the n-th moment of inverse participation ratio. For large energy and parameter
separations the fictitious fermions are described by the Luttinger liquid model
which follows from the Calogero-Sutherland model. The low-temperature
asymptotic form of the two-point equal-parameter spectral correlation function
is found for all energy separations and its relevance for the low temperature
equal-time density correlations in the Calogero-Sutherland model is
conjectured.Comment: 4 pages, Revtex, final journal versio
Phase Diagram of Integer Quantum Hall Effect
The phase diagram of integer quantum Hall effect is numerically determined in
the tight-binding model, which can account for overall features of recently
obtained experimental phase diagram. In particular, the quantum Hall plateaus
are terminated by two distinct insulating phases, characterized by the Hall
resistance with classic and quantized values, respectively, which is also in
good agreement with experiments.Comment: 4 pages, RevTex, 4 PostScript figures; one new figure is added; minor
modifications in the tex
A new Krakow scanning nuclear microprobe: performance tests and early application experienc
A new scanning nuclear microprobe (MP) with a short-length probe forming system was designed, installed and tested at the 3MV Van de Graaff accelerator in Krakow. The MP resolution of 3.3mm was reached for a 2.4 MeV proton beam in the high-current mode (≥100pA). The MP facility provides a local, non-destructive, quantitative elemental microanalysis using a Proton Induced X-ray Emission (PIXE) technique. As example of possible applications an analysis of a geological sample containing monazite crystals investigated by PIXE method is presented
Reflection Symmetry and Quantized Hall Resistivity near Quantum Hall Transition
We present a direct numerical evidence for reflection symmetry of
longitudinal resistivity and quantized Hall resistivity
near the transition between quantum Hall state and insulator, in accord
with the recent experiments. Our results show that a universal scaling behavior
of conductances, and , in the transition regime
decide the reflection symmetry of and quantization of ,
independent of particle-hole symmetry. We also find that in insulating phase
away from the transition region deviates from the quantization and
diverges with .Comment: 3 pages, 4 figures; figure 4 is replace
Recommended from our members
Porphyromonas gingivalis in Alzheimer's disease brains : evidence for disease causation and treatment with small-molecule inhibitors
Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, was identified in the brain of Alzheimer's disease patients. Toxic proteases from the bacterium called gingipains were also identified in the brain of Alzheimer's patients, and levels correlated with tau and ubiquitin pathology. Oral P. gingivalis infection in mice resulted in brain colonization and increased production of Aβ1-42, a component of amyloid plaques. Further, gingipains were neurotoxic in vivo and in vitro, exerting detrimental effects on tau, a protein needed for normal neuronal function. To block this neurotoxicity, we designed and synthesized small-molecule inhibitors targeting gingipains. Gingipain inhibition reduced the bacterial load of an established P. gingivalis brain infection, blocked Aβ1-42 production, reduced neuroinflammation, and rescued neurons in the hippocampus. These data suggest that gingipain inhibitors could be valuable for treating P. gingivalis brain colonization and neurodegeneration in Alzheimer's disease
- …