86 research outputs found

    A testing facility for AO on-sky demonstrations at the Copernico's Telescope within the ADONI framework

    Full text link
    In the context of ADONI - the ADaptive Optics National laboratory of INAF - we are arranging for a facility, accessible to the AO community, in which visiting multi-purpose instrumentation, e.g. systems and prototypes of innovative AO concepts, may be directly tested on sky. The facility is located at the 182cm Copernico telescope in Asiago, the largest telescope in Italy, at its Coude focus, for which refurbishment activities are carried out, given that this focus was initially foreseen in the design, but never implemented and used till today. The facility hosts a laboratory where specialized visiting AO instrumentation may be properly accommodated on an optical bench for on-sky demonstrations. We present the current status of the facility, describing the opto-mechanical design implemented at the telescope that allows to redirect the light toward the Coude focus, the tests on the opto-mechanics carried on for stability verification, the integration of the optical and mechanical components within the preexisting structure

    Data processing on simulated data for SHARK-NIR

    Get PDF
    A robust post processing technique is mandatory to analyse the coronagraphic high contrast imaging data. Angular Differential Imaging (ADI) and Principal Component Analysis (PCA) are the most used approaches to suppress the quasi-static structure in the Point Spread Function (PSF) in order to revealing planets at different separations from the host star. The focus of this work is to apply these two data reduction techniques to obtain the best limit detection for each coronagraphic setting that has been simulated for the SHARK-NIR, a coronagraphic camera that will be implemented at the Large Binocular Telescope (LBT). We investigated different seeing conditions (0.4"1"0.4"-1") for stellar magnitude ranging from R=6 to R=14, with particular care in finding the best compromise between quasi-static speckle subtraction and planet detection.Comment: 9 pages, 8 figures, proceeding for the fifth Adaptive Optics for Extremely Large Telescopes (AO4ELT5) meeting in 201

    Effects of external irradiation of the neck region on intima media thickness of the common carotid artery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that common carotid intima-media thickness (IMT) is increased after radiotherapy (RT) to the head and neck. However, further studies are needed to define the exact mechanism of radiation-induced injury in large vessels, investigate the relationship between radiation dose and large vessel injury and evaluate the rate of progress of atherosclerosis in irradiated vessels.</p> <p>Objectives</p> <p>To investigate whether external irradiation to the carotid area has any effect on IMT of the common carotid artery in a group of patients who received RT vs control group matched for age, gender and race.</p> <p>Methods</p> <p>We studied 19 patients (10 male; 47.8 ± 17.4 years) during a 5-month period (January 2009-July 2009); they had completed RT with a mean of 2.9 years before (range: 1 month-6 years) The mean radiation dose to the neck in the irradiated patients was 41.2 ± 15.6 Gy (range: 25-70 Gy). Common carotid IMT was measured with echo-color Doppler. Nineteen healthy adult patients (10 male; 47.8 ± 17.6) were recruited as a control group.</p> <p>Results</p> <p>IMT was not significantly higher in patients when compared to the control group (0.59 ± 0.16 vs 0.56 ± 0.16 mm, p = 0.4). There was no significant difference between the two groups in relation to the absence (p = 0.7) or presence (p = 0.6) of vascular risk factors. Although the difference did not reach statistical significance (p = 0.1), the irradiated young patients (age ≤ 52 years) had IMT measurements higher (0.54 ± 0.08 mm) than the non-irradiated young patients (0.49 ± 0.14 mm). The mean carotid IMT increased with increasing doses of radiation to the neck (p = 0.04).</p> <p>Conclusion</p> <p>This study shows that increased IMT of the common carotid artery after RT is radiation-dose-related. Therefore it is important to monitor IMT, which can be used as an imaging biomarker for early diagnosis of cerebrovascular disease in patients who have had radiotherapy for treatment of cancer of the head and neck and who are at increased risk for accelerated atherosclerosis in carotid arteries.</p

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    MICADO PSF-reconstruction work package description

    Get PDF
    The point spread function reconstruction (PSF-R) capability is a deliverable of the MICADO@ESO-ELT project. The PSF-R team works on the implementation of the instrument software devoted to reconstruct the point spread function (PSF), independently of the science data, using adaptive optics (AO) telemetry data, both for Single Conjugate (SCAO) and Multi-Conjugate Adaptive Optics (MCAO) mode of the MICADO camera and spectrograph. The PSF-R application will provide reconstructed PSFs through an archive querying system to restore the telemetry data synchronous to each science frame that MICADO will generate. Eventually, the PSF-R software will produce the output according to user specifications. The PSF-R service will support the state-of-the-art scientific analysis of the MICADO imaging and spectroscopic data

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore