429 research outputs found

    Mechanisms of cancer cell motility in vivo.

    Get PDF
    This thesis describes investigations into mechanisms responsible for cancer cell motility in vivo. Chapters 1 and 2 provide a review of current literature in this field and also describe the techniques used to generate the following the results. Chapter 3 describes a candidate-based approach to investigate whether ROCK1 might be regulated by phosphorylation. Mutagenesis of ROCK1 was carried out at 3 chosen sites (T233 T380 T398) in the activation loop and the hydrophobic domain and the phenotypes of the mutants were analysed. Chapter 4 describes a parallel approach finding phosphorylation sites in ROCK1 by mass spectrometry. From these results T518 was chosen for further investigation and its possible function is investigated. Chapter 5 describes an siRNA screen designed to identify novel regulators of the cortical acto-myosin cytoskeleton. The read-out for this was based on the disruption of rounded blebbing morphology of A375 cells cultured on 3D gel matrices. The rounded morphology is similar to that observed in amoeboid cancer cell motility in vivo, therefore we hypothesised that genes required for contracted, rounded morphology might also be required for motility. Results identified PDK1 amongst other genes as a potential regulator of contractile forces in A375 cells and the role of PDK1 was investigated further. It was found that PDK1 was required both in vitro and in vivo for amoeboid cell motility. Chapters 6,7 and 8 detail the investigations into the mechanism of how PDK1 regulates the cytoskeleton and amoeboid cell motility. It was shown that PDK1 was responsible for the localisation of ROCK1 but not ROCK2 at the plasma membrane. This regulation was achieved by the direct binding of ROCK1 to PDK1. It was further found that PDK1 was able to compete with and prevent RhoE, a negative regulator of ROCK1, from binding. Chapter 9 investigates the relationship between cell morphology, motility and pigment production. It was found that it was possible to image melanin containing vesicles using multiphoton excitation, and using this technique, the motile behaviour of pigmented melanoma cells was observed in vivo. It was found that motile invasive cells tended to contain less melanin than non-motile cells suggesting that they were less well differentiated. This chapter details investigations into what differences in signalling could be responsible for a switch to a de-differentiated, more invasive/metastatic phenotype. The final chapter discusses the findings contained within this thesis and the possible implications

    Effects of exercise induced muscle damage on cardiovascular responses to isometric muscle contractions and post-exercise circulatory occlusion

    Get PDF
    Purpose: The aim of the present study was to investigate whether exercise-induced muscle damage (EIMD) influences cardiovascular responses to isometric exercise and post-exercise circulatory occlusion (PECO). We hypothesized that EIMD would increase muscle afferent sensitivity and, accordingly, increase blood pressure responses to exercise and PECO. Methods: Eleven male and nine female participants performed unilateral isometric knee extension at 30% of maximal voluntary contraction (MVC) for 3-min. A thigh cuff was rapidly inflated to 250 mmHg for two min PECO, followed by 3 min recovery. Heart rate and blood pressure were monitored beat-by-beat, with stroke volume and cardiac output estimated from the Modelflow algorithm. Measurements were taken before and 48 h after completing eccentric knee-extension contractions to induce muscle damage (EIMD). Results: EIMD caused 21% decrease in MVC (baseline: 634.6 ± 229.3 N, 48 h: 504.0 ± 160 N), and a 17-fold increase in perceived soreness using a visual-analogue scale (0–100 mm; VASSQ) (both p < 0.001). CV responses to exercise and PECO were not different between pre and post EIMD. However, mean arterial pressure (MAP) was higher during the recovery phase after EIMD (p < 0.05). Significant associations were found between increases in MAP during exercise and VASSQ, Rate of Perceived Exertion (RPE) and Pain after EIMD only (all p < 0.05). Conclusion: The MAP correlations with muscle soreness, RPE and Pain during contractions of damaged muscles suggests that higher afferent activity was associated with higher MAP responses to exercise

    On the "Mandelbrot set" for a pair of linear maps and complex Bernoulli convolutions

    Full text link
    We consider the "Mandelbrot set" MM for pairs of complex linear maps, introduced by Barnsley and Harrington in 1985 and studied by Bousch, Bandt and others. It is defined as the set of parameters λ\lambda in the unit disk such that the attractor AλA_\lambda of the IFS {λz1,λz+1}\{\lambda z-1, \lambda z+1\} is connected. We show that a non-trivial portion of MM near the imaginary axis is contained in the closure of its interior (it is conjectured that all non-real points of MM are in the closure of the set of interior points of MM). Next we turn to the attractors AλA_\lambda themselves and to natural measures νλ\nu_\lambda supported on them. These measures are the complex analogs of much-studied infinite Bernoulli convolutions. Extending the results of Erd\"os and Garsia, we demonstrate how certain classes of complex algebraic integers give rise to singular and absolutely continuous measures νλ\nu_\lambda. Next we investigate the Hausdorff dimension and measure of AλA_\lambda, for λ\lambda in the set MM, for Lebesgue-a.e. λ\lambda. We also obtain partial results on the absolute continuity of νλ\nu_\lambda for a.e. λ\lambda of modulus greater than 1/2\sqrt{1/2}.Comment: 22 pages, 5 figure

    Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells

    Get PDF
    Autologous T cells engineered to express chimeric antigen receptor against the B cell antigen CD19 (CAR19) are achieving marked leukemic remissions in early-phase trials but can be difficult to manufacture, especially in infants or heavily treated patients. We generated universal CAR19 (UCART19) T cells by lentiviral transduction of non-human leukocyte antigen-matched donor cells and simultaneous transcription activator-like effector nuclease (TALEN)-mediated gene editing of T cell receptor α chain and CD52 gene loci. Two infants with relapsed refractory CD19(+) B cell acute lymphoblastic leukemia received lymphodepleting chemotherapy and anti-CD52 serotherapy, followed by a single-dose infusion of UCART19 cells. Molecular remissions were achieved within 28 days in both infants, and UCART19 cells persisted until conditioning ahead of successful allogeneic stem cell transplantation. This bridge-to-transplantation strategy demonstrates the therapeutic potential of gene-editing technology

    Driven diffusion in a periodically compartmentalized tube: homogeneity versus intermittency of particle motion

    Get PDF
    We study the effect of a driving force F on drift and diffusion of a point Brownian particle in a tube formed by identical ylindrical compartments, which create periodic entropy barriers for the particle motion along the tube axis. The particle transport exhibits striking features: the effective mobility monotonically decreases with increasing F, and the effective diffusivity diverges as F → ∞, which indicates that the entropic effects in diffusive transport are enhanced by the driving force. Our consideration is based on two different scenarios of the particle motion at small and large F, homogeneous and intermittent, respectively. The scenarios are deduced from the careful analysis of statistics of the particle transition times between neighboring openings. From this qualitative picture, the limiting small-F and large-F behaviors of the effective mobility and diffusivity are derived analytically. Brownian dynamics simulations are used to find these quantities at intermediate values of the driving force for various compartment lengths and opening radii. This work shows that the driving force may lead to qualitatively different anomalous transport features, depending on the geometry design

    Yukawa Unification and the Superpartner Mass Scale

    Full text link
    Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent LHC constraints, but natural electroweak symmetry breaking still remains the most powerful motivation for superpartner masses within experimental reach. If naturalness is the wrong criterion then what determines the mass scale of the superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2) dark matter, and (3) precision b-tau Yukawa unification. We show that for an LSP that is a bino-Higgsino admixture, these three requirements lead to an upper-bound on the stop and sbottom masses in the several TeV regime because the threshold correction to the bottom mass at the superpartner scale is required to have a particular size. For tan beta about 50, which is needed for t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the opposite sign of the gluino mass, as is favored by renormalization group scaling. For lower values of tan beta, the top and bottom squarks must be even lighter. Yukawa unification plus dark matter implies that superpartners are likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of any considerations of naturalness. We present a model-independent, bottom-up analysis of the SUSY parameter space that is simultaneously consistent with Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark matter phenomenology that accompanies this Yukawa unification. A large portion of the parameter space predicts that the branching fraction for B_s to mu^+ mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure

    Proposed therapeutic range of treosulfan in reduced toxicity pediatric allogeneic hematopoietic stem cell transplant conditioning: results from a prospective trial

    Get PDF
    Treosulfan is given off‐label in pediatric allogeneic hematopoietic stem cell transplant. This study investigated treosulfan's pharmacokinetics (PKs), efficacy, and safety in a prospective trial. Pediatric patients (n = 87) receiving treosulfan‐fludarabine conditioning were followed for at least 1 year posttransplant. PKs were described with a two‐compartment model. During follow‐up, 11 of 87 patients died and 12 of 87 patients had low engraftment (≤ 20% myeloid chimerism). For each increase in treosulfan area under the curve from zero to infinity (AUC(0‐∞)) of 1,000 mg hour/L the hazard ratio (95% confidence interval) for mortality increase was 1.46 (1.23–1.74), and the hazard ratio for low engraftment was 0.61 (0.36–1.04). A cumulative AUC(0‐∞) of 4,800 mg hour/L maximized the probability of success (> 20% engraftment and no mortality) at 82%. Probability of success with AUC(0‐∞) between 80% and 125% of this target were 78% and 79%. Measuring PK at the first dose and individualizing the third dose may be required in nonmalignant disease

    Female heterozygotes for the hypomorphic R40H mutation can have ornithine transcarbamylase deficiency and present in early adolescence: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Ornithine transcarbamylase deficiency is the most common hereditary urea cycle defect. It is inherited in an X-linked manner and classically presents in neonates with encephalopathy and hyperammonemia in males. Females and males with hypomorphic mutations present later, sometimes in adulthood, with episodes that are frequently fatal.</p> <p>Case presentation</p> <p>A 13-year-old Caucasian girl presented with progressive encephalopathy, hyperammonemic coma and lactic acidosis. She had a history of intermittent regular episodes of nausea and vomiting from seven years of age, previously diagnosed as abdominal migraines. At presentation she was hyperammonemic (ammonia 477 μmol/L) with no other biochemical indicators of hepatic dysfunction or damage and had grossly elevated urinary orotate (orotate/creatinine ratio 1.866 μmol/mmol creatinine, reference range <500 μmol/mmol creatinine) highly suggestive of ornithine transcarbamylase deficiency. She was treated with intravenous sodium benzoate and arginine and made a rapid full recovery. She was discharged on a protein-restricted diet. She has not required ongoing treatment with arginine, and baseline ammonia and serum amino acid concentrations are within normal ranges. She has had one further episode of hyperammonemia associated with intercurrent infection after one year of follow up. An R40H (c.119G>A) mutation was identified in the ornithine transcarbamylase gene (<it>OTC</it>) in our patient confirming the first symptomatic female shown heterozygous for the R40H mutation. A review of the literature and correspondence with authors of patients with the R40H mutation identified one other symptomatic female patient who died of hyperammonemic coma in her late teens.</p> <p>Conclusions</p> <p>This report expands the clinical spectrum of presentation of ornithine transcarbamylase deficiency to female heterozygotes for the hypomorphic R40H <it>OTC </it>mutation. Although this mutation is usually associated with a mild phenotype, females with this mutation can present with acute decompensation, which can be fatal. Ornithine transcarbamylase deficiency should be considered in the differential diagnosis of unexplained acute confusion, even without a suggestive family history.</p

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general
    corecore