571 research outputs found

    Anion and cation permeability of the mouse tmem16f calcium-activated channel

    Get PDF
    TMEM16F is involved in several physiological processes, such as blood coagulation, bone development and virus infections. This protein acts both as a Ca2+-dependent phospholipid scram-blase and a Ca2+-activated ion channel but several studies have reported conflicting results about the ion selectivity of the TMEM16F-mediated current. Here, we have performed a detailed side-by-side comparison of the ion selectivity of TMEM16F using the whole-cell and inside-out excised patch configurations to directly compare the results. In inside-out configuration, Ca2+-dependent activation was fast and the TMEM16F-mediated current was activated in a few milliseconds, while in whole-cell recordings full activation required several minutes. We determined the relative permeability between Na+ and Cl¯ (PNa /PCl ) using the dilution method in both configurations. The TMEM16F-mediated current was highly nonselective, but there were differences depending on the configuration of the recordings. In whole-cell recordings, PNa /PCl was approximately 0.5, indicating a slight preference for Cl¯ permeation. In contrast, in inside-out experiments the TMEM16F channel showed a higher permeability for Na+ with PNa /PCl reaching 3.7. Our results demonstrate that the time dependence of Ca2+ activation and the ion selectivity of TMEM16F depend on the recording configuration

    Transport in quenched disorder: light diffusion in strongly heterogeneous turbid media

    Get PDF
    We present a theoretical and experimental study of light transport in disordered media with strongly heterogeneous distribution of scatterers formed via non-scattering regions. Step correlations induced by quenched disorder are found to prevent diffusivity from diverging with increasing heterogeneity scale, contrary to expectations from annealed models. Spectral diffusivity is measured for a porous ceramic where nanopores act as scatterers and macropores render their distribution heterogeneous. Results agree well with Monte Carlo simulations and a proposed analytical model.Comment: 12 pages, 9 figures (significant amount of supplemental information

    Studying the evolution in time of bimetallic nanoparticles morphology by Cyclic Voltammetry

    Get PDF
    Over the last decades, bimetallic nanosized systems have attracted more and more interest thanks to their novel optical, catalytic, magnetic, and sensing properties, often different from the ones of their monometallic counterparts. Studies directed towards the size, shape, composition, and functionalization of the bimetallic nanoparticles are optimized to design sophisticated materials for the intended applications. Considering these facts, it is important to evaluate not only the type and the quantity of the two metals involved, but also their morphological distribution (e.g. alloy or core-shell). Characterization techniques normally used to investigate bimetallic systems are HR-TEM and EXAFS, very expensive and not so easily accessible. Recently, electrochemistry has been employed as alternative or complementary, low-cost, efficient technique with very promising results, allowing the discrimination between alloyed and perfect or defective core-shell systems after their synthesis. A further achievement is the possibility to follow step by step the formation morphology of these nanomaterials during their synthetic procedure. In the present work, we present a study on Au-Pt bimetallic nanoparticles, in form of alloy or core-shell. Cyclovoltammetry (CV) is used as a fast, low-cost and simple screening technique to distinguish the general composition of the sample and to understand the evolution in time of the systems morphology during their synthesis. An additional advantage is the possibility to conduct the study of the material simply in liquid form, without the need of using solid supports, as normally required by other characterization techniques. Interesting results are obtained for Au-based bimetallic samples, gaining information in accordance with TEM images and EXAFS spectra. This fact moves the interest towards the study of other bimetallic systems, to be used in catalytic, electrocatalytic and electroanalytical applications

    Mesoporous silica networks with improved diffusion and interference-rejecting properties for electroanalytical sensing

    Get PDF
    Mesoporous silica materials characterized by well-ordered microstructure and size- and shape-controlled pores have attracted much attention in the last years. These systems can be used for the development of functional thin films for advanced applications in catalysis and electrocatalysis, sensors and actuators, separation techniques, micro- and nano-electronic engineering [1-2]. In this work, \u201cinsulating\u201d and mesoporous silica films were prepared by spin coating a home-made silica sol on a cleaned ITO glass support. The mesoporosity was controlled by the use of Polystyrene (PS) latex beads with different dimensions (30-60-100 nm) as template. The number of successive multi-layer depositions was varied (1-2-3-5 layers) and after the template removal, stable, homogeneous and reproducible transparent films were obtained, characterized by an interconnected porous structure. The morphological features and the physicochemical and optical properties of the films and/or sol-precursors were studied by DLS, FE-SEM, AFM, UV-vis transmittance spectroscopy and wettability analyses. Moreover, a deep electrochemical characterization was also performed by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). In particular, the use of two redox mediator probes [(K4Fe(CN)6) and (Ru(NH3)6Cl3)], presenting opposite charge and different diffusional behaviour, allowed the comprehension of the mass transport and charge transfer phenomena, evidencing the effects of spatial confinement and charge selection. In the case of \u201cinsulating\u201d films prepared without the use of PS latexes, we proved an experimental evidence for theoretical models [3] concerning electroinactive layer-modified electrodes, with a scan-rate-dependent variation of the CV shape due to a progressive increase in the diffusion coefficient inside the insulating layer. A complex balance between diverging effects (higher hydrophilicity and insulating behavior effects of silica) when increasing the numbers of layers was also observed [4]. In the case of mesoporous layers, a better electrochemical response of smaller pores and of thicker layers was found, due to two main cooperative phenomena: i) a diffusion modification from fully planar to radial-convergent at the pore-silica interface due to surface porosity; ii) the presence of pores in a hydrophilic matrix which leads to a capillary pull effects, stronger in the case of smaller hydrophilic pores. The easiness of preparation and the interesting properties of these devices pave the way towards their use in many fields, particularly trace electroanalysis in real matrices. In fact, for example, the porous and properly charged network is able to exclude interfering macromolecules (mucin in our case), preventing electrode biofouling and enhancing the performances of the sensor towards dopamine detection. References [1] M. Ogawa, Chem. Rec. 17 (2017) 217-232. [2] A. Walcarius, Chem. Soc. Rev. 42 (2013) 4098-4140. [3] D. Menshykau, R.G. Compton, Langmuir 25 (2009) 2519\u20132529. [4] V. Pifferi, L. Rimoldi, D. Meroni, F. Segrado, G. Soliveri, S. Ardizzone, L. Falciola, Electrochem. Commun. 81 (2017) 102-105

    Antibiotic Prophylaxis to Reduce Respiratory Tract Infections and Mortality in Adults Receiving Intensive Care

    Get PDF
    BACKGROUND: Pneumonia is an important cause of mortality in intensive care units (ICUs). The incidence of pneumonia in ICU patients ranges between 7% and 40%, and the crude mortality from ventilator-associated pneumonia may exceed 50%. Although not all deaths in patients with this form of pneumonia are directly attributable to pneumonia, it has been shown to contribute to mortality in ICUs independently of other factors that are also strongly associated with such deaths. OBJECTIVES: To assess the effects of prophylactic antibiotic regimens, such as selective decontamination of the digestive tract (SDD) for the prevention of respiratory tract infections (RTIs) and overall mortality in adults receiving intensive care. SEARCH STRATEGY: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2009, issue 1), which contains the Cochrane Acute Respiratory Infections (ARI) Group's Specialised Register; MEDLINE (January 1966 to March 2009); and EMBASE (January 1990 to March 2009). SELECTION CRITERIA: Randomised controlled trials (RCTs) of antibiotic prophylaxis for RTIs and deaths among adult ICU patients. DATA COLLECTION AND ANALYSIS: At least two review authors independently extracted data and assessed trial quality. MAIN RESULTS: We included 36 trials involving 6914 people. There was variation in the antibiotics used, patient characteristics and risk of RTIs and mortality in the control groups. In trials comparing a combination of topical and systemic antibiotics, there was a significant reduction in both RTIs (number of studies = 16, odds ratio (OR) 0.28, 95% confidence interval (CI) 0.20 to 0.38) and total mortality (number of studies = 17, OR 0.75, 95% CI 0.65 to 0.87) in the treated group. In trials comparing topical antimicrobials alone (or comparing topical plus systemic versus systemic alone) there was a significant reduction in RTIs (number of studies = 17, OR 0.44, 95% CI 0.31 to 0.63) but not in total mortality (number of studies = 19, OR 0.97, 95% CI 0.82 to 1.16) in the treated group. AUTHORS' CONCLUSIONS: A combination of topical and systemic prophylactic antibiotics reduces RTIs and overall mortality in adult patients receiving intensive care. Treatment based on the use of topical prophylaxis alone reduces respiratory infections but not mortality. The risk of resistance occurring as a negative consequence of antibiotic use was appropriately explored only in one trial which did not show any such effect

    Expression pattern of Stomatin-domain proteins in the peripheral olfactory system

    Get PDF
    Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications

    Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel

    Get PDF
    At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B (also known as anoctamin2), encode Ca2+-activated Cl- channels (CaCCs), which are found in various cell types and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to investigate the relationship between anion permeation and gating, two processes typically viewed as independent, in TMEM16B expressed in HEK 293T cells. The permeability ratio sequence determined by substituting Cl- with other anions (PX/PCl) was SCN- > I- > NO3- > Br- > Cl- > F- > gluconate. When external Cl- was substituted with other anions, TMEM16B activation and deactivation kinetics at 0.5 μM Ca2+ were modified according to the sequence of permeability ratios, with anions more permeant than Cl- slowing both activation and deactivation and anions less permeant than Cl- accelerating them. Moreover, replacement of external Cl- with gluconate, or sucrose, shifted the voltage dependence of steady-state activation (G-V relation) to more positive potentials, whereas substitution of extracellular or intracellular Cl- with SCN- shifted G-V to more negative potentials. Dose-response relationships for Ca2+ in the presence of different extracellular anions indicated that the apparent affinity for Ca2+ at +100 mV increased with increasing permeability ratio. The apparent affinity for Ca2+ in the presence of intracellular SCN- also increased compared with that in Cl-. Our results provide the first evidence that TMEM16B gating is modulated by permeant anions and provide the basis for future studies aimed at identifying the molecular determinants of TMEM16B ion selectivity and gating. © 2014 Betto et al

    Optical characterization of porcine tissues from various organs in the 650-1100 nm range using time-domain diffuse spectroscopy

    Get PDF
    We present a systematic characterization of the optical properties (µa and µs') of nine representative ex vivo porcine tissues over a broadband spectrum (650-1100 nm). We applied time-resolved diffuse optical spectroscopy measurements for recovering the optical properties of porcine tissues depicting a realistic representation of the tissue heterogeneity and morphology likely to be found in different ex vivo tissues. The results demonstrate a large spectral and inter-tissue variation of optical properties. The data can be exploited for planning or simulating ex vivo experiments with various biophotonics techniques, or even to construct artificial structures mimicking specific pathologies exploiting the wide assortment in optical properties.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.Horizon 2020 Framework Programme10.13039/100010661 (654148;, 675332); Engineering and Physical Sciences Research Council10.13039/501100000266 (EP/R020965/1).published version, accepted versio

    Voltammetric characterization of gold-based bimetallic (AuPt; AuPd; AuAg) nanoparticles

    Get PDF
    Bimetallic nanoparticles are nowadays some of the most promising materials for catalytic, electrocatalytic and electroanalytical applications thanks to their novel optical, catalytic, magnetic, and sensing properties. Such novel features, often different and enhanced with respect to the monometallic counterparts, make these systems good candidates to be conveniently applied in a wide range of fields. The possibility to obtain different kinds of bimetallic composites (in terms of composition, structure, metal loading, morphology, etc.) goes in parallel with the need of powerful and accurate characterization tools. Among the commonly involved techniques like Optical Spectroscopy and Dynamic Light Scattering (DLS), also the more powerful Transmission Electron Microscopy (HR-TEM) and Extended X-Ray Absorption Fine Structure (EXAFS) are widely used. However, these analytical tools present some drawbacks in terms of high costs and low accessibility. In this context, electrochemistry and particularly Cyclic Voltammetry, is here proposed as an alternative, low cost, easy to use and simple characterization technique. The possibility to use electrochemical methods to study the final structure of bimetallic nanocomposites was already demonstrated in the Literature [1-2], but there is still lack of information on how such systems change and evolve in time and after aging periods. Therefore, Cyclic Voltammetry is here used, as a complementary technique to HR-TEM and EXAFS not only to investigate the structure of alloyed or core-shell gold-based (Au-Pt; Au-Pd; Au-Ag) systems (by studying the quantity and type of metals present in the materials), but also to elucidate the evolution and growth in time of such bimetallic samples. Time evolution characterization allows to control the morphology and to fix it at the desired point. Finally, the characterized gold-based nanocomposites are used in electrochemical sensing and electrocatalytic applications. A strong improvement in the response, in terms of higher peak currents and electrocatalytic effects, of the bimetallic systems with respect to the monometallic counterparts is evidenced, due to the intimate contact between the two metals, which is responsible of synergistic effects. Also, the effects of an eventual carbonaceous support on the properties of the metal nanoparticles and the possible synergistic effects between composites and supports are investigated [3]. [1] K. Tschulik, K. Ngamchuea, C. Ziegler, M.G. Beier, C. Damm, A. Eychmueller, R.G. Compton, Adv. Funct. Mater., 2015, 25, 5149\u20135158. [2] V. Pifferi, C. Chan-Thaw, S. Campisi, A. Testolin, A. Villa, L. Falciola, L. Prati, Molecules, 2016, 21, 261. [3] A. Testolin, S.Cattaneo, W. Wang, D. Wang, V. Pifferi, L. Prati, L. Falciola, A. Villa, Surfaces, 2019, 2, 205-215

    Functional expression of TMEM16A in taste bud cells

    Get PDF
    Key points: Taste transduction occurs in taste buds in the tongue epithelium. The Ca2+-activated Cl– channels TMEM16A and TMEM16B play relevant physiological roles in several sensory systems. Here, we report that TMEM16A, but not TMEM16B, is expressed in the apical part of taste buds. Large Ca2+-activated Cl− currents blocked by Ani-9, a selective inhibitor of TMEM16A, are measured in type I taste cells but not in type II or III taste cells. ATP indirectly activates Ca2+-activated Cl– currents in type I cells through TMEM16A channels. These results indicate that TMEM16A is functional in type I taste cells and contribute to understanding the largely unknown physiological roles of these cells. Abstract: The Ca2+-activated Cl– channels TMEM16A and TMEM16B have relevant roles in many physiological processes including neuronal excitability and regulation of Cl– homeostasis. Here, we examined the presence of Ca2+-activated Cl– channels in taste cells of mouse vallate papillae by using immunohistochemistry and electrophysiological recordings. By using immunohistochemistry we showed that only TMEM16A, and not TMEM16B, was expressed in taste bud cells where it largely co-localized with the inwardly rectifying K+ channel KNCJ1 in the apical part of type I cells. By using whole-cell patch-clamp recordings in isolated cells from taste buds, we measured an average current of −1083 pA at −100 mV in 1.5 Î¼m Ca2+ and symmetrical Cl– in type I cells. Ion substitution experiments and blockage by Ani-9, a specific TMEM16A channel blocker, indicated that Ca2+ activated anionic currents through TMEM16A channels. We did not detect any Ca2+-activated Cl– currents in type II or III taste cells. ATP is released by type II cells in response to various tastants and reaches type I cells where it is hydrolysed by ecto-ATPases. Type I cells also express P2Y purinergic receptors and stimulation of type I cells with extracellular ATP produced large Ca2+-activated Cl− currents blocked by Ani-9, indicating a possible role of TMEM16A in ATP-mediated signalling. These results provide a definitive demonstration that TMEM16A-mediated currents are functional in type I taste cells and provide a foundation for future studies investigating physiological roles for these often-neglected taste cells
    • …
    corecore