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Light diffusion in quenched disorder: Role of step correlations
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We present a theoretical and experimental study of light transport in disordered media with strongly
heterogeneous distribution of scatterers formed via nonscattering regions. Step correlations induced by quenched
disorder are found to prevent diffusivity from diverging with increasing heterogeneity scale, contrary to
expectations from annealed models. Spectral diffusivity is measured for a porous ceramic where nanopores
act as scatterers and macropores render their distribution heterogeneous. Results agree well with Monte Carlo
simulations and a proposed analytical model.
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I. INTRODUCTION

Series of incremental random changes govern the evolution
of countless systems around us, from the movement of particles
and molecules [1–4] and wave propagation in disordered
media [5,6] to the foraging of animals [7] and spread of
disease [8]. By virtue of the central limit theorem, macroscopic
evolution of such random walk processes can often be
explained in terms of classical diffusion. Although therefore
ubiquitous, diffusion is in each particular case determined by
unique microscopic mechanisms. These mechanisms are often
complex and understanding the onset and speed of diffusion
is generally a challenge [9–14]. The matter is particularly
relevant to research in optics of disordered media, including
the study of radiative transfer through planetary atmospheres
[15–17], optical imaging and spectroscopy in biomedical [18]
and material science [19], and, more recently, anomalous
diffusion in engineered disordered materials [20–25].

Multiple scattering of light is typically viewed as a
Poissonian random walk of independent and exponentially
distributed steps. This viewpoint inherently assumes a uniform
random distribution of scatterers throughout the medium and
results in a well-known expression for the diffusion constant
[26], D = v�t/3, where v is the average transport velocity for
light in the medium and �t is the transport mean free path.
This diffusivity relation, however, breaks down in systems
with a heterogeneous distribution of scatterers, such as clouds,
biological tissues, porous materials, and foams. The reason
is twofold. First, the presence of nonscattering regions in
the scattering medium leads to a broader (nonexponential)
distribution of step lengths, which, in turn, induces an increase
of the diffusivity [27]. Second, the quenched (i.e., spatially
frozen) heterogeneity induces step correlations that tend to
counteract the increase in diffusivity caused by long steps
[21,27]. Due to the complexity of these aspects, understanding
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of light transport in systems with heterogeneous distribution
of scatterers remains rather limited. Important insight has,
nonetheless, been reached with the development of generalized
transport equations and homogenization theory [29–37] as
well as probabilistic analysis of random walks [27,38,39].
When it comes to quenched disorder, most works are the-
oretical and fall within the context of anomalous diffusion
[21,23,24,40–42]. Experimental and theoretical investigations
of how regular diffusion is affected by quenched (frozen)
disorder and the accompanying step correlations are, on the
other hand, largely missing.

Here, we theoretically and experimentally investigate light
diffusion in heterogeneous systems constituted by turbid
media with embedded nonscattering regions (holes). Special
focus is on how quenched disorder influence transport. The
transport process, which can be referred to as a holey random
walk [27], is illustrated in Fig. 1. An analytical model for
the diffusivity in such media is developed and compared
to direct Monte Carlo simulations (letting sphere packings

FIG. 1. Monte Carlo simulation of light transport in a two-
dimensional holey system. Nonscattering regions embedded into a
turbid medium form a type of quenched disorder that, depending
on the properties of the turbid medium, can induce strong step
correlations. Here, in similarity to our 3D experiments on porous
ceramics, the diameter of the nonscattering regions is 180 times larger
than the transport mean free path of the turbid medium, resulting in
strong step correlations.
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define hole arrangement). An important finding is that step
correlations prevent the diffusivity to diverge with increasing
heterogeneity size, contrary to expectations from annealed
models. Experiments are conducted on a custom-made ceramic
with a bimodal pore size distribution: a nanoporous, strongly
scattering base with embedded macropores acting as holes.
Time-resolved measurements of light transmission allows
assessment of diffusivity in the 600- to 900-nm spectral range,
and results are found to be in agreement with theory.

II. SIMULATIONS AND THEORY

The system under consideration is a turbid medium char-
acterized by a transport mean free path �t and containing
nonscattering spherical holes of radius r at filling fraction
φ. The holes do not overlap and may be arranged randomly or
periodically. In the limit of �t � r , step correlations become
negligible and an (approximate) analytical expression for
the resulting diffusion constant can be calculated from the
ratio of the mean squared step (E[S2]) to the mean step
(E[S]) [27]. In general, however, the resulting diffusivity is
not known. As �t approaches and becomes smaller than r

(cf. Fig. 1), step correlations get increasingly important and
the diffusion constant becomes difficult to assess. To gain
insight into this matter, we performed a series of Monte
Carlo simulations (MC) of random walks in three-dimensional
systems containing randomly or periodically arranged holes
with φ = 0.3. The diffusion constant can be estimated by
looking at the evolution of the mean square displacement
(MSD) at long times. In the diffusive limit, the MSD is linear
with time, MSD = 6Dt (in 3D). Figure 2 shows the time-
dependent MSD for the cases of both strong and negligible
step correlations (�t ≈ 0.005r and �t ≈ 10r , respectively). In
the latter case, transition from ballistic to diffusive transport
is smooth and similar to that observed in most random walks
with independent increments. In great contrast, the presence of
strong step correlations results in a MSD evolution that goes
from ballistic to diffusive via transient subdiffusive behavior
(cf. [21,28]). This behavior is because long steps through holes
often are counteracted by steps back through the same hole,
which creates a fingerprint of step correlations in disordered
media (cf. trajectories in Fig. 1).

Let us now focus on the fact that strong step correlations
go hand in hand with random walkers being likely to return
to the same hole several times before reaching a new one.
We propose that transport in such systems can be viewed
as a random walk on a lattice (similar to the approach used
to understand deterministic diffusion in a periodic Lorentz
gas [43,44]), where the holes correspond to the lattice sites,
with a the lattice constant and τ the hole-hole transfer time.
The diffusivity is then simply given by D = a2/6τ [45]. The
difficult part consists in determining a and τ . We propose that
(i) a can be approximated by the lattice constant of a periodic

face-centered cubic lattice, a = 3

√
8πr3

3
√

2φ
, and (ii), in the limit

when the distance between voids is much larger than �t , τ can
be obtained from classical diffusion in a spherical shell with
diffusivity Dshell = v�t/3. The analytical model is illustrated
in Fig. 3. As we discuss below, although the model relies
on several important approximations, it grasps the essential
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FIG. 2. (Color online) Dynamics of transport in holey systems.
Panel (a) shows the MSD evolution (time relative to the hole crossing
time thole = 2r/v) and (b) the log-log-derivative (equaling 2 and 1
for ballistic and diffusive transport, respectively). When �t � r , step
correlations are negligible and MSD evolution changes smoothly
from ballistic to diffusive. In contrast, when �t � r , steps are strongly
correlated and diffusive evolution is reached via transient subdiffusive
dynamics (the log-log-slope can even be below zero).

physics of the process and allows quantitative comparison with
MC and experiments.

The transfer time τ is a sum of (i) the time spent on returning
to the hole τR , (ii) the time to cross the hole when first reaching
it and after returning to it, and (iii) the time τT spent on reaching
a new hole once the return series is broken. The number of
returns before transfer to a new hole follows a geometric
distribution, on average being R/(1 − R) = R/T , and the
number of crossings equals R/T + 1 = 1/T . We therefore

τ

R , τR

T , τT

FIG. 3. Lattice model for transport in holey media. Transport can
be viewed as hops between holes, i.e., a random walk on a lattice. The
hole-hole transfer time τ can be expressed as a function of the return
probability R = 1 − T , the average return time τR , and the average
transmission time τT . If the return probability is large, we propose
that these unknown parameters can be calculated from a diffusion
model for a spherical shell (schematically added as a shaded region).
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reach

τ = R

T
τR + 1

T

E[ζ ]

vh

+ τT , (1)

where E[ζ ] is the average chord length (= 4r/3 for spheres,
assuming isotropic flux) and vh is the light velocity in the
hole. Analytical expressions for the unknown parameters in
Eq. (1) were derived by solving the diffusion equation in
spherical shells (derivation given in Appendix A) and are
summarized here. τR and τT can be retrieved from Eq. (2) via
τR = τ̃ (r) and τT = τ̃ (r + Lp), and R and T from Eq. (3) via
R = |F (r)| and T = |F (r + Lp)|. There, Lis(z) = ∑∞

k=1
zk

ks is
the Jonquière function (the polylogarithm) [46], r0 = r + �t ,
Lp is the physical thickness of the spherical shell, and

L = Lp + 2re is the extrapolated thickness (re being the
extrapolation length that can be calculated as done for light
diffusion in, e.g., planar slabs [47]). The remaining step is to set
the shell thickness Lp adequately. Because the actual diffusive
process between spherical holes is particularly complex, the
derivation of an exact value for Lp that would take into account
all characteristics of the medium (hole arrangement, filling
fraction, etc) seems out of reach. Nevertheless, setting Lp

between a − 2r (smallest gap) and a − r (distance from hole
edge to center of next hole) appears reasonable and works
well for the structures considered here. Above all, the exact
value of Lp has little effect on the relation between diffusivity
and hole size reported below, which is a main message of this
paper.

τ̃ (r̃) = L2

Dshellπ2

−Li3(e−i π
L

(r̃−r0)) + Li3(ei π
L

(r̃−r0)) + Li3(e−i π
L

(r̃+r0−2(r−re))) − Li3(ei π
L

(r̃+r0−2(r−re)))

−Li1(e−i π
L

(r̃−r0)) + Li1(ei π
L

(r̃−r0)) + Li1(e−i π
L
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, (2)

F (r̃) =−iπ r̃

2π2r0

( − Li1(e−i π
L
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L
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L

(r̃+r0−2(r−re))) − Li1(ei π
L

(r̃+r0−2(r−re)))
)

+ L

2π2r0

(
Li2(e−i π

L
(r̃−r0)) + Li2(ei π

L
(r̃−r0)) − Li2(e−i π

L
(r̃+r0−2(r−re))) − Li2(ei π

L
(r̃+r0−2(r−re)))

)
. (3)

Figure 4 shows how diffusivity is modified with increasing
hole size (index-matched system, φ = 0.3 fixed1). Diffusivity

1For a given hole filling fraction φ, the diffusivity will depend es-
sentially on the ratio r/�t . This follows from a scaling consideration:
When scaling the holey system and random walk with a factor γ , we
have that r → γ r and �t → γ �t and t → γ t . For diffusion constants,
we therefore will have D(γ r,γ �t ,φ) = γD(r,�t ,φ).
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FIG. 4. (Color online) Importance of step correlations on trans-
port. E[S2] diverges with increasing r/�t , but step correlations prevent
D from diverging. By neglecting step correlations (annealed model
in Ref. [27]), one would obtain the growth in D/Dh shown by the red
(gray) dashed line. MC of quenched three-dimensional systems with
periodically or randomly arranged holes (markers) show that diffusion
is only 1.6–1.7 times faster than if scatterers were homogeneously
distributed. In the limit of significant step correlations, our analytical
model (red [gray] solid lines) agrees quantitatively with MC, when
Lp is set to a − 1.6r and a − 1.65r for the periodic and random
systems, respectively.

is reported with respect to the homogenized counterpart, i.e.,
the diffusion constant for a system with the same amount
of scatterers but distributed homogeneously, Dh = v�t /3

1−φ
[27].

The outcomes of MC and of the analytical model presented
above are given by the markers and the solid lines respectively.
Clearly, the model captures the essence of the transport process
(for large r/�t ). For the periodic and random holey systems,
quantitative agreement occurs when setting the shell thickness
to Lp = a − 1.6r and Lp = a − 1.65r , respectively (i.e.,
midway between the limits introduced above). That diffusion
is slightly faster when holes are arranged randomly is related
to that fast spreading via close-lying voids is possible. The
diffusivity enhancement evaluated from the annealed model
(Ref. [27]) is also shown for comparison (dashed line). The
“annealed” diffusion constant diverges due to a diverging
mean squared step length E[S2] (the mean step length,
E[S] remaining constant), while the “quenched” diffusion
constants saturate at a value of about 1.6–1.7 times that of
the homogenized system. This leads us to a very important
conclusion: In quenched disordered systems, step correlations
become so strong with increasing heterogeneity size that
they completely counteract the increase of E[S2], thereby
preventing the diffusivity from diverging. It is interesting to
realize that in a one-dimensional system, D = Dh regardless
of how scatterers are distributed. The average number of
scatterers that needs to be passed over macroscopic distances
remains the same. Clearly, the situation is very different in
three-dimensional systems.

III. EXPERIMENTS

We now test this prediction experimentally. We have
manufactured porous ceramics with a bimodal pore size distri-
bution by sintering a mixture of zirconia nanoparticles, latex
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nanoparticles, and 180-μm-diameter polymethyl methacrylate
microspheres. Manufacturing details are given in Appendix B.
Briefly, latex nanoparticles and microspheres are burned out
during sintering, leaving a nanoporous ceramic with embedded
macropores occupying around 30% of the total volume (the
porosity of the nanoporous part being 46%). The latex particles
are used as spacers, increasing the final distance between the
different zirconia particles and, as a result, also increasing
light scattering (see Ref. [48]). The nanoporous part acts
as the turbid medium, and by manufacturing a reference
sample without any macropores, its �t can be measured. The
optical properties of these materials are studied via optical
time-of-flight spectroscopy [49,50]. Short picosecond pulses
are injected into the sample and the diffuse transmission is
resolved in time using time-correlated single photon counting.
The system used is described in Refs. [51,52] and allows
coverage of the 600- to 900-nm spectral range (see Appendix C
for additional details). The diffusion constant (and absorption
coefficient) can be determined from the temporal shape of
the transmitted pulse. As the thicknesses of the samples are
much larger than the distance over which transport becomes
diffusive, finite-size effects are negligible. Using a reasonable
estimate of the effective refractive index neff (here, we use
the averaged permittivity), �t of the nanoporous part can be
estimated from the measured D = Dref of the reference sample
(via Dref = v�t/3 with v = c0/neff). Accordingly, the turbid
material between holes is found to exhibit �t ranging from
0.7 μm at 600 nm to 2.2 μm at 900 nm and low absorption
(0.026 cm−1 at 660 nm down to 0.005 cm−1 at 900 nm).
The small size of the nanopores makes scattering strongly
wavelength dependent, and the transport scattering coefficient
μ′

s decays as ∼ λ−2.7 (in good agreement with previous reports
on scattering of nanoporous ceramics [50,53]).

Figure 5(a) shows the diffusivity spectra for the holey (bi-
modal) system and for the nanoporous reference and compares
them to MC and the proposed analytical model. The refractive
index mismatch between holes and nanoporous media is
taken into account. The discrepancy between experiments
and theory may be due to differences in �t between the
reference and the holey system (scattering is very sensitive
to the microstructure and differences related to the inclusion
and burnout of microspheres cannot be ruled out) or to the
inaccuracy in extracting �t from Dref experimentally. Clearly,
the holey system exhibits significantly faster diffusion than its
homogenized counterpart (here Dh = v�t

3(1−φ) × nφ=0

nφ=0.3
, where n

refers to refractive index calculated from averaged permittivity,
in an attempt to take into account the change that follows
from removal of solid material). At the same time, due to step
correlations, diffusion is slower than what could be expected
from the step length distribution. This is seen in Fig. 5(b),
keeping in mind that if steps were uncorrelated, D/Dh

would diverge quickly (as in Fig. 4). The retrieved diffusivity
enhancements are between 1.5 and 1.8, in agreement with our
previous analysis.

Let us also note that the nonlinear relation between D and
Dh has an important consequence: The shape of diffusivity
spectra is not only dependent on the microstructure (e.g.,
scatterer or pore size). This has bearing on the interpretation
of diffuse spectra in general. It is, for example, common to
convert diffusivity spectra D(λ) into a transport scattering
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FIG. 5. (Color online) Experimental results and comparison with
theory and simulations. Panel (a) shows the measured diffusivity
of the holey ceramic (nanoporous material with macropores, φ =
0.3, r = 90 μm; dots) and a purely nanoporous reference (squares).
Diffusivity predicted by MC (+) and our lattice model (red [gray]
solid line) is also shown, as well as the homogenized counterpart
of the holey system (dashed line). Clearly, homogenization is not an
appropriate approximation of macroscopic transport in holey systems,
while a good agreement is found with our theory and simulations on
quenched holey system. Along the lines of Fig. 4, panel (b) shows
the diffusivity enhancement D/Dh for the holey system.

spectra μ′
s(λ) and use that to assess particle size [54]. This

procedure relies on a linear relation between D and �t = 1/μ′
s ,

valid for homogeneously turbid media but, as shown here, not
valid for holey media. While the nanoporous reference media
has a diffusivity spectra that corresponds to a λ−2.7 decay of μ′

s ,
the holey system—when analyzed in the same way—exhibits
a λ−2.1 decay. This change in apparent scattering spectra is
induced by heterogeneity, not by an increase of pore size.

IV. CONCLUSIONS

This work provides an initial understanding and a first
investigation of the importance of step correlations due to
quenched disorder on diffusion in strongly heterogeneous
media. We have found that step correlations can counteract
completely the effect of a broad step length distribution,
preventing diffusivity to diverge with increasing scale of
heterogeneities. This effect was predicted theoretically and
confirmed experimentally and numerically. The results have
implications to optical diagnostics in general (e.g., analytical
spectroscopy, biomedical optics, atmospherical science) as
they reveal that strong heterogeneity complicates assessment
of microstructure based on diffusivity spectra. In addition,
our study motivates further theoretical studies on transport
in quenched disorder, as generalization to arbitrary systems
remains (e.g., nonspherical voids [38,39], broad heterogeneity
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size distribution [20,22,24,25,27], and/or anisotropic hetero-
geneity [55]). Finally, the matter is not specific to light but is a
transport phenomenon that can apply to waves and particles in
complex environments in general. We therefore hope that our
study will stimulate new experiments in other fields of science.
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APPENDIX A: DIFFUSION THROUGH
SPHERICAL SHELLS

Here, we derive an analytical expression for the energy
density in diffusive spherical shells by solving the diffusion
equation in spherical coordinates with Dirichlet boundary
conditions and a Dirac δ impulse as an initial condition. Based
on this, we derive expressions for time-resolved reflection and
transmission. The theoretical results are compared with direct
Monte Carlo simulations of transport in spherical shells. It
should be noted that the notation used here differs from the no-
tation used in the main article. In the main article r refers to the
radius of holes while it here refers to the spherical coordinate.

1. The diffusion equation

Consider a spherical shell of inner radius rin and outer radius
rout containing a diffusive medium with diffusion constant D.
A spherical plane source is placed at r = r0 in order to have
rotational invariance. The system is illustrated in Fig. 6.

The diffusion equation in its general form is written as

∂u(r,t)
∂t

= D∇2u(r,t) (A1)

We impose the Dirichlet boundary conditions u(r = rin,t) =
0 and u(r = rout,t) = 0, where r = |r| and take the initial
condition u(r,0) = δ(r − r0).

FIG. 6. (Color online) Cut of a spherical shell of diffusive
medium with absorbing inner (r = rin) and outer (r = rout) bound-
aries and a spherical plane source (r = r0).

In spherical coordinates, the Laplacian operator can be
written as

∇2u= ∂2u

∂r2
+ 2

r

∂u

∂r
+ 1

r2

∂2u

∂ϕ2
+ cos ϕ

r2 sin ϕ

∂u

∂ϕ
+ 1

r2 sin2 ϕ

∂2u

∂θ2

(A2)

and the energy density can be written by separating the
variables as u(r,t) = �(r)X(ϕ,θ )�(t) to construct separable
solutions of the diffusion equation. Since we assume rotational
invariance, the angular terms disappear in the Laplacian and
the energy density can then be written simply as

u(r,t) = �(r)�(t), (A3)

and the diffusion equation in spherical coordinates, after
division on each side by �(r)�(t), reads

1

�(t)

∂�(t)

∂t
= D

�(r)

(
∂2�(r)

∂r2
+ 2

r

∂�(r)

∂r

)
= −λ, (A4)

where λ is the separation constant. The solution of the temporal
equation ∂�(t)/∂t = −λ�(t) simply gives �(t) = exp(−λt),
such that u(r,t) = exp(−λt)�(r). At this point, the equation
that remains to be solved is

∂2�(r)

∂r2
+ 2

r

∂�(r)

∂r
+ λ

D
�(r) = 0. (A5)

We can use the known solution of the spherical Bessel
differential equation:

∂2�(r)

∂r2
+ 2

r

∂�(r)

∂r
+

(
λ

D
− m(m + 1)

)
�(r) = 0, (A6)

with m = 0,1,2,3, . . . the eigenvalue order generally associ-
ated with the spherical harmonics. The solution of the equation
is written in terms of spherical Bessel functions as

�(r) = C1jm

[√
λ

D
r

]
+ C2ym

[√
λ

D
r

]
, (A7)

where C1 and C2 are two constants depending on the boundary
conditions, and jm and ym are the spherical Bessel functions
of the first and second kind, respectively, of order m. Due to
rotational invariance in our case, only the order m = 0 remains.
Interestingly, the spherical bessel functions of order 0 can be
written as elementary functions: j0(x) = sin(x)/x and y0(x) =
− cos(x)/x. The solution of our equation can then be written
as

�(r) =
√

D

λ

1

r

(
C1 sin

[√
λ

D
r

]
− C2 cos

[√
λ

D
r

])
. (A8)

2. Boundary conditions

We now apply the Dirichlet boundary conditions �(r =
rin) = 0 and �(r = rout) = 0. By applying the former, we find
that C2 = C1 tan(

√
λ/D rin), such that

�(r) =C1

√
D

λ

1

r

(
sin

[√
λ

D
r

]
− tan

[√
λ

D
rin

]
cos

[√
λ

D
r

])
,

(A9)

and by applying the latter, we arrive at the following condi-
tion: tan[

√
λ/D rin] = tan[

√
λ/D rout]. Writing rout = rin + L
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leads to the condition that
√

λ/DL should be a multiple of π .
Thus, the eigenvalues λ should be

λn = n2π2

L2
D (A10)

with n = 1,2,3, . . . .
Since the eigenfunctions are complete on a bounded

domain, the fundamental solution can be written as an
eigenfunction series as u(r,t) = ∑∞

n=1 cn�n(t)�n(r), in which
the constant C1 is contained within the coefficients cn. We
therefore have

u(r,t) =
∞∑

n=1

cn exp

[
− n2π2

L2
Dt

]
L

nπ

1

r

(
sin

[
nπ

L
r

]

− tan

[
nπ

L
rin

]
cos

[
nπ

L
r

])
. (A11)

3. Initial conditions

We now turn to the determination of the coefficients cn,
uniquely prescribed by the initial conditions at t = 0 and are
given by the usual orthogonality formula:

cn =
∫∫∫

�
u(r,0)�n(r)dV∫∫∫

�
�2

n(r)dV
(A12)

with � the integration volume. With u(r,t0) = δ(|r − r0|), we
are left with two volume integrals to solve:

cn =
∫∫∫

�
δ(|r − r0|)�n(r)dV∫∫∫

�
�2

n(r)dV
. (A13)

The volume element dV in spherical coordinates and
rotational invariance becomes dV = 4πr2dr . The volume
integral of the numerator is simply the function 4π�(r0)r2

0
and the denominator can be evaluated exactly. After some
math, we find

cn = 2nπr0

L2
cos

[
nπ

L
rin

]
sin

[
nπ

L
(r0 − rin)

]
. (A14)

4. Propagator (energy density)

Equations (A11) and (A14) provide the complete solution
for the propagator in diffusive spherical shells, which, all in
all, simplifies to

u(r,t) =
∞∑

n=1

2r0

Lr
sin

[
nπ

L
(r0 − rin)

]
sin

[
nπ

L
(r − rin)

]

× exp

[
− n2π2

L2
Dt

]
. (A15)

For the application of Eq. (A15) to real samples, one should
consider the fact that the intensity is not zero exactly at the
boundary but at a distance re = 2/3�(1 + Ri)/(1 − Ri), called
the extrapolation length, where � is the mean free path in the
diffusive medium and Ri is the internal reflection coefficient
at the boundary. See Ref. [47] for a description on how to
calculate the extrapolation length for a given mismatch in
refractive index. It is possible to use Eq. (A15) directly by
taking the thickness L as the extrapolated thickness L = Lp +
2re, where Lp is the physical thickness. Similarly, the inner

FIG. 7. (Color online) Temporal evolution of the energy density
in a diffusive spherical shell.

radius should be taken as an extrapolated inner radius rin =
rin,p − re. Thus, a point source placed one mean free path
apart from this boundary should be placed at r0 = rin,p + � =
rin + re + �.

The energy density in the spherical shell at different times
is shown in Fig. 7 for a system with rin,p = 50 μm, Lp =
100 μm, � = 1 μm, and D = 67 μm2/ps. The source is placed
at r0 = rin,p + � = 51 μm.

5. Energy flux

To calculate the fluxes in transmission or reflection through
the slab, it is necessary to apply the first Fick’s law of diffusion:

J = −D∇u(r,t). (A16)

In spherical coordinates with rotational invariance, we have
that ∇u(r,t) = ∂u(r,t)/∂r r̂. Thus, the diffusion flux can easily
be calculated by spatial derivation of u(r,t) in Eq. (A15). We
find

J (r,t) = −D

∞∑
n=1

2r0

Lr2
sin

[
nπ

L
(r0 − rin)

]

×
(

nπ

L
r cos

[
nπ

L
(r − rin)

]
− sin

[
nπ

L
(r − rin)

])

× exp

[
− n2π2

L2
Dt

]
. (A17)

6. Time-resolved transmission and reflection

The time-resolved reflection and transmission are then
found by integrating the fluxes over the surface of the
corresponding boundaries and normalizing by the source
4πr2

0 :

R(t) = −
(

rin,p

r0

)2

J (r = rin,p,t),

T (t) =
(

rin,p + Lp

r0

)2

J (r = rin,p + Lp,t). (A18)

The normalization
∫ ∞

0 (R(t) + T (t))dt = 1 can be verified.
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7. Mean first-passage time

An important step is the calculation of the mean reflection and transmission (or first passage) time. This can be calculated
as τR = ∫ ∞

0 tR(t)dt/
∫ ∞

0 R(t)dt and τT = ∫ ∞
0 tT (t)dt/

∫ ∞
0 T (t)dt , respectively. An analytical expression can be found for this

quantity by using the definition of the polylogarithm, or Jonquière’s function [46], defined as Lis(z) = ∑∞
k=1

zk

ks , and Euler’s
formula on the sine and cosines. One finds [Eq. (2) in the main text]:

τ (r) = L2

Dπ2

−Li3[e−i π
L

(r−r0)] + Li3[ei π
L

(r−r0)] + Li3[e−i π
L

(r+r0−2rin)] − Li3[ei π
L

(r+r0−2rin)]

−Li1[e−i π
L

(r−r0)] + Li1[ei π
L

(r−r0)] + Li1[e−i π
L

(r+r0−2rin)] − Li1[ei π
L

(r+r0−2rin)]
. (A19)

In the practical example considered above, we find τ (r = rin,p) = τR = 0.834167 ps and τ (r = rin,p + Lp) = τT = 25.6608 ps.

8. Total transmitted or reflected flux

Similarly, the integrated transmission or reflection at position r , F (r) can be expressed in terms of polylogarithms, as [Eq. (3)
in main text]:

F (r) = −iπr

2π2r0
(−Li1[e−i π

L
(r−r0)] + Li1[ei π

L
(r−r0)] + Li1[e−i π

L
(r+r0−2rin)] − Li1[ei π

L
(r+r0−2rin)])

+ L

2π2r0
(Li2[e−i π

L
(r−r0)] + Li2[ei π

L
(r−r0)] − Li2[e−i π

L
(r+r0−2rin)] − Li2[ei π

L
(r+r0−2rin)]), (A20)

which gives, in the practical example, R = |F (r = rin,p)| = 0.95141 and T = |F (r = rin,p + Lp)| = 0.04859.

9. Comparison with Monte Carlo simulations

The validity of our theoretical findings have been checked
via Monte Carlo simulations of random walks in spherical
shells. In these simulations, 106 random walkers are launched
one mean free path away from the inner boundary of the
spherical shell (inside the spherical shell). Thereafter ran-
dom walkers take isotropic, independent, and exponentially
distributed steps with average length �. Letting the numerical
example from above serve as an example, we set � to 1 μm and
the walker velocity to v = 200 μm/ps (resulting in a diffusion
constant of D = v�/3 = 67 μm2/ps). The MC estimates of
reflection and transmission and their respective characteristic
times are shown in Table I below along with the theoretical
values presented above.

Clearly, the theoretical values are in very good agreement
with simulation outcome. Also the shapes of the time-resolved
reflection and transmission agree well, as shown in Fig. 8
below. Of course, more elaborate investigations of the validity
of the diffusion model for, e.g., nonzero boundary conditions
(mismatch in refractive index) and thin shells—extensively

TABLE I. Comparison between the theoretical predictions and
the outcome of random walk Monte Carlo. The simulated system
is defined by rin,p = 50 μm, Lp = 100 μm, � = 1 μm, and D =
67 μm2/ps. Boundary reflections are set to zero (index-matched con-
ditions). The source is placed at r0 = rin,p + � = 51 μm.). Simulated
values (MC estimates) are reported by stating the mean and standard
deviation of three values each being the result of a simulation of 106

random walkers.

Parameter Theoretical value MC estimate

R (%) 95.14 95.04 ± 0.02
τR (ps) 0.834 0.853 ± 0.002
T (%) 4.86 4.96 ± 0.02
τT (ps) 25.661 25.78 ± 0.07

studied for common geometries such as slabs or semi-infinite
media—remains to be done.

APPENDIX B: CERAMICS MANUFACTURING

An aqueous suspension with a solids loading of 50 vol%
of ZrO2 (TZ3YSE, Tosoh, Japan) and 0.3 wt% of dispersant
(Dolapix PC 75, Zschimmer-Schwarz, Germany) was prepared
by ball milling with milling media of zirconia. The suspension
was diluted with water to a solids loading of 25 vol%,
and 6 vol% of latex as binder was introduced in form of
a latex emulsion (LDM 7651S, Celanese, Sweden) with a
particle size of 150 nm. For the holey ceramic, polyethylene
microspheres (Cospheric, USA) with a size of 180 μm
were added to the suspension. To avoid segregation of the
polyethylene microspheres in the aqueous suspension, xanthan

0 20 40 60 80 100
10

−6

10
−4

10
−2

Time (ps)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 

Reflectance

Transmittance
MC
Theory

FIG. 8. (Color online) A comparison, in terms of time-resolved
transmittance and reflectance, between the presented theory of
diffusion in spherical shell and direct Monte Carlo simulation.
The simulation data shown originates from one of the three sets
of 106 random walkers behind Table I. For this set, reflectance
was R = 95.06%, τR = 0.852 ps, transmittance T = 4.94%, and
τT = 25.75 ps.
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FIG. 9. (Color online) Schematic of the system used for optical
time-of-flight spectroscopy (cf. [51,52]).

gum (Rhodophol 23, Rhodia) was used as a thickener to
increase the viscosity of the suspension. For the holey ceramic,
the volume of polyethylene microspheres used corresponded
to 45 vol% with respect to the total solid volume of zirconia
and polyethylene microspheres. To maintain the homogeneity
of the suspension with zirconia particles, latex emulsion, and
polyethylene microspheres, the suspension was frozen drop by
drop in liquid nitrogen followed by a freeze-drying procedure
to remove the ice by sublimation. The freeze dried particles
were used to prepare ceramic green bodies by compaction.
When the green bodies were sintered at 900 ◦C for 2 h in a SiC
furnace (Entech, Sweden), the organic additives were removed.
Furthermore, the temperature was sufficient for an initial solid
state diffusion, which allowed neck formation between the
zirconia particles. At the same time, the temperature was not
high enough to cause any sintering shrinkage of the powder
compact. In this manner, a nanoporous ceramic with embedded
macropores was obtained. As a reference, a material without
any microsphere were also manufactured (same manufacturing
procedure).

Density measurements, performed with the Archimedes
method, showed that the nanoporous reference has a porosity
of around 46%. The holey ceramic, on the other hand, has
a porosity of about 63.5%. This is in good agreement with
what is expected from the added fraction of microspheres. The
45 vol% microspheres should, when the other 55 vol% solids

have formed a nanoporous media with 46% porosity, give rise
to a macroporosity of around 30% and an overall porosity
(macropores and nanoporosity) of about 63%.

APPENDIX C: OPTICAL TIME-OF-FLIGHT
EXPERIMENTS

The system used for experiments is depicted in Fig. 9 and
has been described in detail in Refs. [51,52]. It consists of
a supercontinuum source (SuperK Extreme, NKT) emitting
mode-locked laser pulses in the range 450–1750 nm at a
repetition rate of 20 MHz. The white light exiting the source is
dispersed by an SF10 Pellin-Broca prism and then focused on
a variable slit by a 150-mm-focal-length achromatic doublet
for spectral bandwidth selection. Tuning is achieved by the
rotation of the prism. The slit plane is imaged on a 50-μm
graded index fiber by means of two achromatic lenses. The
spectral bandwidth of the system ranges from about 3 nm at
600 nm to 6 nm at 900 nm. Light is delivered to and collected
from the sample by means of 1-mm step-index fibers. The
detector consists of a Hybrid PMT (HPM-100-50, Becker and
Hickl, Germany). The instrumental response function (IRF),
measured by setting the detection and injection fibers face
to face, has a full-width half-maximum (FWHM) of about
180 ps over the whole spectral range. The time-of-flight
(TOF) distribution of detected photons is measured by a
time-correlated single-photon counting (TCSPC) board (SPC-
130, Becker and Hickl, Germany) mounted on the PC, which
controls both the prism rotation and the data acquisition.

The porous ceramics was measured in transmittance ge-
ometry with colinear fiber optics. TOF distributions was
acquired in the 600- to 900-nm range (in steps of 20 nm)
at an intensity that gave about 400 000 counts/s. The samples
were around 3 mm thick, resulting in average TOF of a few
nanoseconds, depending on the wavelength (e.g., TOF curves
are far wider than the IRF). The size of the optical fiber
collecting transmitted light was taken into account during
evaluation of TOF distribution (i.e., during the assessment
of the diffusion constant).
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