4,591 research outputs found
Hyperextended Scalar-Tensor Gravity
We study a general Scalar-Tensor Theory with an arbitrary coupling funtion
but also an arbitrary dependence of the ``gravitational
constant'' in the cases in which either one of them, or both, do not
admit an analytical inverse, as in the hyperextended inflationary scenario. We
present the full set of field equations and study their cosmological behavior.
We show that different scalar-tensor theories can be grouped in classes with
the same solution for the scalar field.Comment: latex file, To appear in Physical Review
Non-Vacuum Bianchi Types I and V in f(R) Gravity
In a recent paper \cite{1}, we have studied the vacuum solutions of Bianchi
types I and V spacetimes in the framework of metric f(R) gravity. Here we
extend this work to perfect fluid solutions. For this purpose, we take stiff
matter to find energy density and pressure of the universe. In particular, we
find two exact solutions in each case which correspond to two models of the
universe. The first solution gives a singular model while the second solution
provides a non-singular model. The physical behavior of these models has been
discussed using some physical quantities. Also, the function of the Ricci
scalar is evaluated.Comment: 15 pages, accepted for publication in Gen. Realtiv. Gravi
Optimal control for halo orbit missions
This paper addresses the computation of the required trajectory correction
maneuvers (TCM) for a halo orbit space mission to compensate for the launch velocity
errors introduced by inaccuracies of the launch vehicle. By combiningdynamical
systems theory with optimal control techniques, we produce a portrait of the complex
landscape of the trajectory design space. This approach enables parametric studies
not available to mission designers a few years ago, such as how the magnitude of the
errors and the timingof the first TCM affect the correction ΔV. The impetus for
combiningdynamical systems theory and optimal control in this problem arises from
design issues for the Genesis Discovery mission being developed for NASA by the Jet
Propulsion Laboratory
Relativistic Electromagnetic Mass Models: Charged Dust Distribution in Higher Dimensions
Electromagnetic mass models are proved to exist in higher dimensional theory
of general relativity corresponding to charged dust distribution. Along with
the general proof a specific example is also sited as a supporting candidate.Comment: Latex, 7 pages. Accepted in Astrophysics and Space Scienc
Simulations of slip flow on nanobubble-laden surfaces
On microstructured hydrophobic surfaces, geometrical patterns may lead to the
appearance of a superhydrophobic state, where gas bubbles at the surface can
have a strong impact on the fluid flow along such surfaces. In particular, they
can strongly influence a detected slip at the surface. We present two-phase
lattice Boltzmann simulations of a flow over structured surfaces with attached
gas bubbles and demonstrate how the detected slip depends on the pattern
geometry, the bulk pressure, or the shear rate. Since a large slip leads to
reduced friction, our results allow to assist in the optimization of
microchannel flows for large throughput.Comment: 22 pages, 12 figure
Technical Note: Reanalysis of upper troposphere humidity data from the MOZAIC programme for the period 1994 to 2009
In-situ observational data on the relative humidity (RH) in the upper troposphere and lowermost stratosphere (UT/LS), or tropopause region, respectively, collected aboard civil passenger aircraft in the MOZAIC (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft) programme were reanalysed for the period 2000 to 2009. Previous analyses of probability distribution functions (PDF) of upper troposphere humidity (UTH) data from MOZAIC observations from year 2000 and later indicated a bias of UTH data towards higher RH values compared to data of the period 1994 to 1999. As a result, PDF of UTH data show a substantial fraction of observations above 100% relative humidity with respect to liquid water (RHliquid), which is not possible from thermodynamical principles. An in-depth reanalysis of the data set recovered a calibration artefact from year 2000 on, while data of the previous period from 1994 to 1999 were found to be correct. The full data set for 2000–2009 was reanalysed applying the adjusted calibration procedure. Applied correction schemes and a revised error analysis are presented along with the reanalysed PDF of RHliquid and RHice
Rapid diagnostic tests for molecular surveillance of Plasmodium falciparum malaria -assessment of DNA extraction methods and field applicability
Background: The need for new malaria surveillance tools and strategies is critical, given improved global malaria control and regional elimination efforts. High quality Plasmodium falciparum DNA can reliably be extracted from malaria rapid diagnostic tests (RDTs). Together with highly sensitive molecular assays, wide scale collection of used RDTs may serve as a modern tool for improved malaria case detection and drug resistance surveillance. However, comparative studies of DNA extraction efficiency from RDTs and the field applicability are lacking. The aim of this study was to compare and evaluate different methods of DNA extraction from RDTs and to test the field applicability for the purpose of molecular epidemiological investigations. Methods: DNA was extracted from two RDT devices (Paracheck-PfW and SD Bioline Malaria Pf/Pan (R)), seeded in vitro with 10-fold dilutions of cultured 3D7 P. falciparum parasites diluted in malaria negative whole blood. The level of P. falciparum detection was determined for each extraction method and RDT device with multiple nested-PCR and real-time PCR assays. The field applicability was tested on 855 paired RDT (Paracheck-Pf) and filter paper (Whatman (R) 3MM) blood samples (734 RDT negative and 121 RDT positive samples) collected from febrile patients in Zanzibar 2010. RDT positive samples were genotyped at four key single nucleotide polymorphisms (SNPs) in pfmdr1 and pfcrt as well as for pfmdr1 copy number, all associated with anti-malarial drug resistance. Results: The P. falciparum DNA detection limit varied with RDT device and extraction method. Chelex-100 extraction performed best for all extraction matrixes. There was no statistically significant difference in PCR detection rates in DNA extracted from RDTs and filter paper field samples. Similarly there were no significant differences in the PCR success rates and genotyping outcomes for the respective SNPs in the 121 RDT positive samples. Conclusions: The results support RDTs as a valuable source of parasite DNA and provide evidence for RDT-DNA extraction for improved malaria case detection, molecular drug resistance surveillance, and RDT quality control.ACT Consortium through Bill and Melinda Gates Foundation; Swedish International Development Agency (SIDA) [SWE 2009-193]; Swedish Civil Contingencies Agency (MSB) [2010-7991]; Swedish Medical Research Council (VR) [2009-3785]; Goljes Foundationinfo:eu-repo/semantics/publishedVersio
Complexity reduction of astrochemical networks
We present a new computational scheme aimed at reducing the complexity of the
chemical networks in astrophysical models, one which is shown to markedly
improve their computational efficiency. It contains a flux-reduction scheme
that permits to deal with both large and small systems. This procedure is shown
to yield a large speed-up of the corresponding numerical codes and provides
good accord with the full network results. We analyse and discuss two examples
involving chemistry networks of the interstellar medium and show that the
results from the present reduction technique reproduce very well the results
from fuller calculations.Comment: 9 pages, 7 figures, accepted for publication in Monthly Notices of
the Royal Astronomical Society Main Journa
- …
