833 research outputs found
Biofuels Production from Biomass by Thermochemical Conversion Technologies
Agricultural biomass as an energy resource has several environmental and economical advantages and has potential to substantially contribute to present days’ fuel demands. Currently, thermochemical processes for agricultural biomass to energy transformation seem promising and feasible. The relative advantage of thermochemical conversion over others is due to higher productivity and compatibility with existing infrastructure facilities. However, the majority of these processes are still under development phase and trying to secure a market share due to various challenges, right from suitable infrastructure, raw material, technical limitations, government policies, and social acceptance. The knowledge at hand suggests that biomass can become a sustainable and major contributor to the current energy demands, if research and development are encouraged in the field of thermochemical conversion for various agricultural biomass types. This paper intends to explore the physical and chemical characteristics of biofuel substitutes of fossil fuels, potential biomass sources, and process parameters for thermochemical conversion
Noise Stabilization of Self-Organized Memories
We investigate a nonlinear dynamical system which ``remembers'' preselected
values of a system parameter. The deterministic version of the system can
encode many parameter values during a transient period, but in the limit of
long times, almost all of them are forgotten. Here we show that a certain type
of stochastic noise can stabilize multiple memories, enabling many parameter
values to be encoded permanently. We present analytic results that provide
insight both into the memory formation and into the noise-induced memory
stabilization. The relevance of our results to experiments on the
charge-density wave material is discussed.Comment: 29 pages, 6 figures, submitted to Physical Review
Defects, order, and hysteresis in driven charge-density waves
We model driven two-dimensional charge-density waves in random media via a
modified Swift-Hohenberg equation, which includes both amplitude and phase
fluctuations of the condensate. As the driving force is increased, we find that
the defect density first increases and then decreases. Furthermore, we find
switching phenomena, due to the formation of channels of dislocations. These
results are in qualitative accord with recent dynamical x-ray scattering
experiments by Ringlandet al. and transport experiments by Lemay et al.Comment: Accepted to Phys. Rev. Lett. Click here for
"http://www-theory.mpip-mainz.mpg.de/~karttune/CDW/", movies of driven CDW
Convective Term and Transversely Driven Charge-Density Waves
We derive the convective terms in the damping which determine the structure
of the moving charge-density wave (CDW), and study the effect of a current
flowing transverse to conducting chains on the CDW dynamics along the chains.
In contrast to a recent prediction we find that the effect is orders of
magnitude smaller, and that contributions from transverse currents of electron-
and hole-like quasiparticles to the force exerted on the CDW along the chains
act in the opposite directions. We discuss recent experimental verification of
the effect and demonstrate experimentally that geometry effects might mimic the
transverse current effect.Comment: RevTeX, 9 pages, 1 figure, accepted for publications in PR
Wave function mapping conditions in Open Quantum Dots structures
We discuss the minimal conditions for wave function spectroscopy, in which
resonant tunneling is the measurement tool. Two systems are addressed: resonant
tunneling diodes, as a toy model, and open quantum dots. The toy model is used
to analyze the crucial tunning between the necessary resolution in
current-voltage characteristics and the breakdown of the wave functions probing
potentials into a level splitting characteristic of double quantum wells. The
present results establish a parameter region where the wavefunction
spectroscopy by resonant tunneling could be achieved. In the case of open
quantum dots, a breakdown of the mapping condition is related to a change into
a double quantum dot structure induced by the local probing potential. The
analogy between the toy model and open quantum dots show that a precise control
over shape and extention of the potential probes is irrelevant for wave
function mapping. Moreover, the present system is a realization of a tunable
Fano system in the wave function mapping regime.Comment: 6 pages, 6 figure
Temporally ordered collective creep and dynamic transition in the charge-density-wave conductor NbSe3
We have observed an unusual form of creep at low temperatures in the
charge-density-wave (CDW) conductor NbSe. This creep develops when CDW
motion becomes limited by thermally-activated phase advance past individual
impurities, demonstrating the importance of local pinning and related
short-length-scale dynamics. Unlike in vortex lattices, elastic collective
dynamics on longer length scales results in temporally ordered motion and a
finite threshold field. A first-order dynamic phase transition from creep to
high-velocity sliding produces "switching" in the velocity-field
characteristic.Comment: 4 pages, 4 eps figures; minor clarifications To be published in Phys.
Rev. Let
Hmong Adults Self-Rated Oral Health: A Pilot Study
Since 1975, the Hmong refugee population in the U.S. has increased over 200%. However, little is known about their dental needs or self-rated oral health (SROH). The study aims were to: (1) describe the SROH, self-rated general health (SRGH), and use of dental/physician services; and (2) identify the factors associated with SROH among Hmong adults. A cross-sectional study design with locating sampling methodology was used. Oral health questionnaire was administered to assess SROH and SRGH, past dental and physician visits, and language preference. One hundred twenty adults aged 18–50+ were recruited and 118 had useable information. Of these, 49% rated their oral health as poor/fair and 30% rated their general health as poor/fair. Thirty-nine percent reported that they did not have a regular source of dental care, 46% rated their access to dental care as poor/fair, 43% visited a dentist and 66% visited a physician within the past 12 months. Bivariate analyses demonstrated that access to dental care, past dental visits, age and SRGH were significantly associated with SROH (P \u3c 0.05). Multivariate analyses demonstrated a strong association between access to dental care and good/excellent SROH. About half of Hmong adults rated their oral health and access to dental care as poor. Dental insurance, access to dental care, past preventive dental/physician visits and SRGH were associated with SROH
Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy
Scanning tunneling microscopy (STM) gives us the opportunity to map the
surface of functionalized carbon nanotubes in an energy resolved manner and
with atomic precision. But this potential is largely untapped, mainly due to
sample stability issues which inhibit reliable measurements. Here we present a
simple and straightforward solution that makes away with this difficulty, by
incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a
few layer graphene - nanotube composite. This enabled us to measure energy
resolved tunneling conductance maps on the nanotubes, which shed light on the
level of doping, charge transfer between tube and functional groups and the
dependence of defect creation or functionalization on crystallographic
orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene,
STM, CITS, ST
Viscoelastic Depinning of Driven Systems: Mean-Field Plastic Scallops
We have investigated the mean field dynamics of an overdamped viscoelastic
medium driven through quenched disorder. The model introduced incorporates
coexistence of pinned and sliding degrees of freedom and can exhibit continuous
elastic depinning or first order hysteretic depinning. Numerical simulations
indicate mean field instabilities that correspond to macroscopic stick-slip
events and lead to premature switching. The model is relevant for the dynamics
of driven vortex arrays in superconductors and other extended disordered
systems.Comment: 4 pages, 2 figure
- …