62,539 research outputs found

    Matter formed at the BNL relativistic heavy ion collider

    Full text link
    We suggest that the "new form of matter" found just above TcT_c by RHIC is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (more precisely, nearly massless) mesons of the quantum numbers of π\pi, σ\sigma, ρ\rho and a1a_1. Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at TcT_c just as they do from below TcT_c as predicted by the vector manifestation (VM in short) of hidden local symmetry. This could explain the rapid rise in entropy up to TcT_c found in LGS calculations. We argue that how the dynamics work can be understood from the behavior of the hard and soft glue.Comment: Final versio

    Spanning forest polynomials and the transcendental weight of Feynman graphs

    Full text link
    We give combinatorial criteria for predicting the transcendental weight of Feynman integrals of certain graphs in ϕ4\phi^4 theory. By studying spanning forest polynomials, we obtain operations on graphs which are weight-preserving, and a list of subgraphs which induce a drop in the transcendental weight.Comment: 30 page

    Recent developments in perturbation theory

    Get PDF
    Rayleigh-Schroeder perturbation theory - degenerate and non-degenerate states - quantum chemistry - other perturbation equation

    Putting an Edge to the Poisson Bracket

    Get PDF
    We consider a general formalism for treating a Hamiltonian (canonical) field theory with a spatial boundary. In this formalism essentially all functionals are differentiable from the very beginning and hence no improvement terms are needed. We introduce a new Poisson bracket which differs from the usual ``bulk'' Poisson bracket with a boundary term and show that the Jacobi identity is satisfied. The result is geometrized on an abstract world volume manifold. The method is suitable for studying systems with a spatial edge like the ones often considered in Chern-Simons theory and General Relativity. Finally, we discuss how the boundary terms may be related to the time ordering when quantizing.Comment: 36 pages, LaTeX. v2: A manifest formulation of the Poisson bracket and some examples are added, corrected a claim in Appendix C, added an Appendix F and a reference. v3: Some comments and references adde

    Using Wii technology to explore real spaces via virtual environments for people who are blind

    Get PDF
    Purpose - Virtual environments (VEs) that represent real spaces (RSs) give people who are blind the opportunity to build a cognitive map in advance that they will be able to use when arriving at the RS. Design - In this research study Nintendo Wii based technology was used for exploring VEs via the Wiici application. The Wiimote allows the user to interact with VEs by simulating walking and scanning the space. Finding - By getting haptic and auditory feedback the user learned to explore new spaces. We examined the participants' abilities to explore new simple and complex places, construct a cognitive map, and perform orientation tasks in the RS. Originality – To our knowledge, this finding presents the first virtual environment for people who are blind that allow the participants to scan the environment and by this to construct map model spatial representations

    Incommensurate magnetic ordering in Cu2Te2O5X2Cu_2 Te_2 O_5 X_2 (X=Cl,Br) studied by neutron diffraction

    Full text link
    We present the results of the first neutron powder and single crystal diffraction studies of the coupled spin tetrahedra systems {\CuTeX} (X=Cl, Br). Incommensurate antiferromagnetic order with the propagation vectors {\bf{k}_{Cl}}\approx[0.150,0.422,\half], {\bf{k}_{Br}}\approx[0.158,0.354,\half] sets in below TNT_{N}=18 K for X=Cl and 11 K for X=Br. No simple collinear antiferromagnetic or ferromagnetic arrangements of moments within Cu2+{}^{2+} tetrahedra fit these observations. Fitting the diffraction data to more complex but physically reasonable models with multiple helices leads to a moment of 0.67(1)μB\mu_B/Cu2+{}^{2+} at 1.5 K for the Cl-compound. The reason for such a complex ground state may be geometrical frustration of the spins due to the intra- and inter-tetrahedral couplings having similar strengths. The magnetic moment in the Br- compound, calculated assuming it has the same magnetic structure as the Cl compound, is only 0.51(5)μB\mu_B/Cu2+{}^{2+} at 1.5 K. In neither compound has any evidence for a structural transition accompanying the magnetic ordering been found

    Joint evolution of multiple social traits: a kin selection analysis

    Get PDF
    General models of the evolution of cooperation, altruism and other social behaviours have focused almost entirely on single traits, whereas it is clear that social traits commonly interact. We develop a general kin-selection framework for the evolution of social behaviours in multiple dimensions. We show that whenever there are interactions among social traits new behaviours can emerge that are not predicted by one-dimensional analyses. For example, a prohibitively costly cooperative trait can ultimately be favoured owing to initial evolution in other (cheaper) social traits that in turn change the cost-benefit ratio of the original trait. To understand these behaviours, we use a two-dimensional stability criterion that can be viewed as an extension of Hamilton's rule. Our principal example is the social dilemma posed by, first, the construction and, second, the exploitation of a shared public good. We find that, contrary to the separate one-dimensional analyses, evolutionary feedback between the two traits can cause an increase in the equilibrium level of selfish exploitation with increasing relatedness, while both social (production plus exploitation) and asocial (neither) strategies can be locally stable. Our results demonstrate the importance of emergent stability properties of multidimensional social dilemmas, as one-dimensional stability in all component dimensions can conceal multidimensional instability

    Bose-Einstein Correlations for Three-Dimensionally Expanding, Cylindrically Symmetric, Finite Systems

    Get PDF
    The parameters of the Bose-Einstein correlation function may obey an {\it MtM_t-scaling}, as observed in S+PbS + Pb and Pb+PbPb + Pb reactions at CERN SPS. This MtM_t-scaling implies that the Bose-Einstein correlation functions view only a small part of the big and expanding system. The full sizes of the expanding system at the last interaction are shown to be measurable with the help the invariant momentum distribution of the emitted particles. A vanishing duration parameter can also be generated in the considered model-class with a specific MtM_t dependence.Comment: 35 pages, ReVTeX, LaTeX, no figures, discussion extende
    corecore