13,391 research outputs found
A composition analyzer for microparticles using a spark ion source
Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the element of both detector and particle materials. The total extracted ion currents was typically 10A within a period of 100ns, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes, or by nuclear bomb explosions
Scientific, institutional and personal rivalries among Soviet geographers in the late Stalin era
Scientific, institutional and personal rivalries between three key centres of geographical research and scholarship (the Academy of Sciences Institute of Geography and the Faculties of Geography at Moscow and Leningrad State Universities) are surveyed for the period from 1945 to the early 1950s. It is argued that the debates and rivalries between members of the three institutions appear to have been motivated by a variety of scientific, ideological, institutional and personal factors, but that genuine scientific disagreements were at least as important as political and ideological factors in influencing the course of the debates and in determining their final outcome
Coarse-Grained Simulations of Membranes under Tension
We investigate the properties of membranes under tension by Monte-Carlo
simulations of a generic coarse-grained model for lipid bilayers. We give a
comprising overview of the behavior of several membrane characteristics, such
as the area per lipid, the monolayer overlap, the nematic order, and pressure
profiles. Both the low-temperature regime, where the membranes are in a gel
phase, and the high-temperature regime, where they are in the fluid phase, are
considered. In the gel state, the membrane is hardly influenced by tension. In
the fluid state, high tensions lead to structural changes in the membrane,
which result in different compressibility regimes. The ripple state, which is
found at tension zero in the transition regime between the fluid and the gel
phase, disappears under tension and gives way to an interdigitated phase. We
also study the membrane fluctuations in the fluid phase. In the low tension
regime the data can be fitted nicely to a suitably extended elastic theory. At
higher tensions the elastic fit consistently underestimates the strength of
long-wavelength fluctuations. Finally, we investigate the influence of tension
on the effective interaction between simple transmembrane inclusions and show
that tension can be used to tune the hydrophobic mismatch interaction between
membrane proteins.Comment: 14 pages, 14 figures, accepted for publication in The Journal of
Chemical Physic
Partially ordered models
We provide a formal definition and study the basic properties of partially
ordered chains (POC). These systems were proposed to model textures in image
processing and to represent independence relations between random variables in
statistics (in the later case they are known as Bayesian networks). Our chains
are a generalization of probabilistic cellular automata (PCA) and their theory
has features intermediate between that of discrete-time processes and the
theory of statistical mechanical lattice fields. Its proper definition is based
on the notion of partially ordered specification (POS), in close analogy to the
theory of Gibbs measure. This paper contains two types of results. First, we
present the basic elements of the general theory of POCs: basic geometrical
issues, definition in terms of conditional probability kernels, extremal
decomposition, extremality and triviality, reconstruction starting from
single-site kernels, relations between POM and Gibbs fields. Second, we prove
three uniqueness criteria that correspond to the criteria known as bounded
uniformity, Dobrushin and disagreement percolation in the theory of Gibbs
measures.Comment: 54 pages, 11 figures, 6 simulations. Submited to Journal of Stat.
Phy
Solving the Direction Field for Discrete Agent Motion
Models for pedestrian dynamics are often based on microscopic approaches
allowing for individual agent navigation. To reach a given destination, the
agent has to consider environmental obstacles. We propose a direction field
calculated on a regular grid with a Moore neighborhood, where obstacles are
represented by occupied cells. Our developed algorithm exactly reproduces the
shortest path with regard to the Euclidean metric.Comment: 8 pages, 4 figure
The whole and its parts : why and how to disentangle plant communities and synusiae in vegetation classification
Most plant communities consist of different structural and ecological subsets, ranging from cryptogams to different tree layers. The completeness and approach with which these subsets are sampled have implications for vegetation classification. Non‐vascular plants are often omitted or sometimes treated separately, referring to their assemblages as “synusiae” (e.g. epiphytes on bark, saxicolous species on rocks). The distinction of complete plant communities (phytocoenoses or holocoenoses) from their parts (synusiae or merocoenoses) is crucial to avoid logical problems and inconsistencies of the resulting classification systems. We here describe theoretical differences between the phytocoenosis as a whole and its parts, and outline consequences of this distinction for practise and terminology in vegetation classification. To implement a clearer separation, we call for modifications of the International Code of Phytosociological Nomenclature and the EuroVegChecklist. We believe that these steps will make vegetation classification systems better applicable and raise the recognition of the importance of non‐vascular plants in the vegetation as well as their interplay with vascular plants
Plantas medicinais, aromáticas e tóxicas do horto da Embrapa Amazônia Oriental usadas por população caboclo-pesqueira de municípios do nordeste paraense: diversidade e uso.
bitstream/item/39901/1/Com-Tec-26-Am-Oriental.pd
Mean first-passage time of surface-mediated diffusion in spherical domains
We present an exact calculation of the mean first-passage time to a target on
the surface of a 2D or 3D spherical domain, for a molecule alternating phases
of surface diffusion on the domain boundary and phases of bulk diffusion. The
presented approach is based on an integral equation which can be solved
analytically. Numerically validated approximation schemes, which provide more
tractable expressions of the mean first-passage time are also proposed. In the
framework of this minimal model of surface-mediated reactions, we show
analytically that the mean reaction time can be minimized as a function of the
desorption rate from the surface.Comment: to appear in J. Stat. Phy
- …