22 research outputs found

    Long-Range Enhancer Associated with Chromatin Looping Allows AP-1 Regulation of the Peptidylarginine Deiminase 3 Gene in Differentiated Keratinocyte

    Get PDF
    Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease

    Apprenticeship Training in Germany – Investment or Productivity Driven?

    Full text link
    The German dual apprenticeship system came under pressure in recent years because enterprises were not willing to offer a sufficient number of apprenticeship positions. A frequently made argument is that the gap could be closed if more firms would be willing to incur net costs during the training period. This paper investigates for the first time whether German enterprises on average indeed incur net costs during the apprenticeship period, i.e. if the impact of an increase in the share of apprentices on contemporary profits is negative. The paper uses the representative linked employer-employee panel data of the IAB (LIAB) and takes into account possible endogeneity of training intensity and unobserved heterogeneity in the profit estimation by employing panel system GMM methods. An increase in the share of apprentices has no effect on profits. This can be interpreted as a first indication that most establishments in Germany do not invest more in apprentices than their productivity effects during the apprenticeship period

    Human-specific gain of function in a developmental enhancer

    Get PDF
    Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81–base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain

    β-Catenin promotes respiratory progenitor identity in mouse foregut

    No full text
    The mammalian respiratory system, consisting of both trachea and lung, initiates from the foregut endoderm. The molecular program that instructs endodermal cells to adopt the respiratory fate is not fully understood. Here we show that conditional inactivation of β-Catenin (also termed Ctnnb1) in foregut endoderm leads to absence of both the trachea and lung due to a failure in maintaining the respiratory fate. In converse, conditional expression of an activated form of β-Catenin leads to expansion of Nkx2.1, an early marker for the trachea and lung, into adjacent endoderm including the stomach epithelium. Analyses of these mutants show that the loss or gain of trachea/lung progenitor identity is accompanied by an expansion or contraction of esophagus/stomach progenitor identity, respectively. Our findings reveal an early role for β-Catenin in the establishment of respiratory progenitors in mouse foregut endoderm
    corecore