3,021 research outputs found

    Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma

    Full text link
    We demonstrate that for a finite-size quark-gluon plasma the induced gluon radiation from heavy quarks is stronger than that for light quarks when the gluon formation length becomes comparable with (or exceeds) the size of the plasma. The effect is due to oscillations of the light-cone wave function for the in-medium qgqq\to gq transition. The dead cone model by Dokshitzer and Kharzeev neglecting quantum finite-size effects is not valid in this regime. The finite-size effects also enhance the photon emission from heavy quarks.Comment: 8 pages, 3 figure

    Final state interaction effects in D(e,ep)D(e,e'p) scattering

    Full text link
    We present a systematic study of the final-state interaction (FSI) effects in D(e,ep)D(e,e'p) scattering in the CEBAF energy range with particular emphasis on the phenomenon of the angular anisotropy of the missing momentum distribution. We find that FSI effects dominate at missing momentum p_m \gsim 1.5 fm1^{-1}. FSI effects in the excitation of the SS-wave state are much stronger than in the excitation of the DD-wave.Comment: LATEX, 11 pages, 5 figures available from the authors on request, KFA-IKP(TH)-1994-3

    Final state interactions and NNNN correlations: are the latter observable?

    Get PDF
    Are effects of short range correlations in the ground state of the target nucleus (initial state correlations ISC) observable in experiments on quasielastic A(e,ep)A(e,e'p) scattering at large missing momentum pmp_{m}? Will the missing momentum spectrum observed at CEBAF be overwhelmed by final state interactions (FSI) of the struck proton? The recent advances in the theory of FSI and findings of complex interplay and strong quantum-mechanical interference of FSI and ISC contributions to scattering at p_{m}\gsim 1\,fm1^{-1} are reviewed. We conclude that for p_m \gsim 1 \, fm1^{-1} quasielastic scattering is dominated by FSI effects and the sensitivity to details of the nuclear ground state is lost.Comment: Invited Talk given by N.N.Nikolaev at the Conference on Perspectives in Nuclear Physics at Intermediate Energies (Trieste, Italy, May 1995) 18 pages, uuencoded including all figure

    Non-linear effects in hopping conduction of single-crystal La_{2}CuO_{4 + \delta}

    Full text link
    The unusual non-linear effects in hopping conduction of single-crystal La_{2}CuO_{4 + \delta} with excess oxygen has been observed. The resistance is measured as a function of applied voltage U (10^{-3} V - 25 V) in the temperature range 5 K 0.1 V) the conduction of sample investigated corresponds well to Mott's variable-range hopping (VRH). An unusual conduction behavior is found, however, in low voltage range (approximately below 0.1 V), where the influence of electric field and (or) electron heating effect on VRH ought to be neglected. Here we have observed strong increase in resistance at increasing U at T < 20 K, whereas at T > 20 K the resistance decreases with increasing U. The magnetoresistance of the sample below 20 K has been positive at low voltage and negative at high voltage. The observed non-Ohmic behavior is attributable to inhomogeneity of the sample, and namely, to the enrichment of sample surface with oxygen during the course of the heat treatment of the sample in helium and air atmosphere before measurements. At low enough temperature (below 20 K) the surface layer with increased oxygen concentration is presumed to consist of disconnected superconducting regions (with T_{c} about 20 K) in poor-conducting matrix. The results obtained demonstrate that transport properties of cuprate oxides may be determined in essential degree by structural or stoichimetric inhomogeneities. This should be taken into account at evaluation of "quality" of high-temperature superconductors on the basis of transport properties measurements.Comment: 12 pages, REVTex, 11 Postscript figures, To be published in Fizika Nizkikh Temperatur (published by AIP as Low Temperature Physics

    Review of analytical instruments for EEG analysis

    Full text link
    Since it was first used in 1926, EEG has been one of the most useful instruments of neuroscience. In order to start using EEG data we need not only EEG apparatus, but also some analytical tools and skills to understand what our data mean. This article describes several classical analytical tools and also new one which appeared only several years ago. We hope it will be useful for those researchers who have only started working in the field of cognitive EEG

    Condensation of classical nonlinear waves

    Full text link
    We study the formation of a large-scale coherent structure (a condensate) in classical wave equations by considering the defocusing nonlinear Schr\"odinger equation as a representative model. We formulate a thermodynamic description of the condensation process by using a wave turbulence theory with ultraviolet cut-off. In 3 dimensions the equilibrium state undergoes a phase transition for sufficiently low energy density, while no transition occurs in 2 dimensions, in analogy with standard Bose-Einstein condensation in quantum systems. Numerical simulations show that the thermodynamic limit is reached for systems with 16316^3 computational modes and greater. On the basis of a modified wave turbulence theory, we show that the nonlinear interaction makes the transition to condensation subcritical. The theory is in quantitative agreement with the simulations
    corecore