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A b s t r a c t

Are e�ects of short range correlations in a ground state of the target nucleus (initial
state correlations ISC) observable in experiments on quasielastic A(e; e0p) scattering
at large missing momentum pm? Will the missing momentum spectrum observed at
CEBAF be overwhelmed by �nal state interactions (FSI) of the struck proton? The
recent advances in the theory of FSI and �ndings of complex interplay and strong
quantum-mechanical interference of FSI and ISC contributions to scattering at pm �>

1 fm�1 are reviewed. We conclude that for pm �> 1 fm�1 quasielastic scattering is
dominated by FSI e�ects and the sensitivity to details of the nuclear ground state is
lost.

1 Introduction

Ever since Gottfried's classic theoretical works ([1], see also [2]), an investigation of short range
ISC in nuclei is considered one of the principal goals of experiments on quasielastic A(e; e0p)
scattering at large missing momentum pm (for reviews see [3]). Such experiments are becoming
a reality at a new generation of high luminosity, continuous beam, electron facilities (CEBAF,
AmPS, MAMI, Bates). Especially important is a new domain of GeV energies attainable at
CEBAF. The experimentally measured pm distribution is distorted by FSI of the struck proton
in the target nucleus debris. Interpretation of the experimental data taken at non-relativistic
energies of the struck proton is plagued by rapid energy dependence of FSI. At CEBAF for
the �rst time the missing energy{momentum spectrum will be exhausted under conditions of
negligible variation of FSI parameters.

Is FSI very strong or just leads to small corrections to the ISC contribution to large-pm
phenomena? The recent work [4, 5, 6, 7, 8, 9, 10, 11] on the theory of FSI at high Q2 called
in question the mere possibility of the theoretical interpretation of the experimental data on
large pm in terms of the ground state correlations. In this talk we review this new important
development in the theory of FSI at GeV energies.

From the technical point of view, at large Q2
�> (1 � 2)GeV 2 and large Tkin � Q2=2mp,

the very description of FSI becomes substantially di�erent from the conventionally used non-
relativistic (optical) potential model DWIA. Namely, the nature of nucleon-nucleon interaction
changes from the purely elastic, potential scattering at low energies to a di�ractive, strongly
absorptive, small angle scattering at Tkin �> (0:5 � 1)GeV . In this di�ractive regime the po-
tential approach breaks down and Glauber's multiple scattering theory [12] becomes a natural
framework for quantitative description of FSI and leads to several important new e�ects in the
calculation of FSI-modi�ed one-body density matrix and missing momentum distribution in
A(e; e0p) scattering, which are missed in the conventional DWIA.
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As a matter of fact, a very strong absorption of struck protons in the target nucleus debris
is a well established fact: it reduces the observed cross section almost twofold for carbon and
fourfold for the gold nucleus [13] in perfect agreement with the Glauber theory predictions [5].
Little wonder that such a strong attenuation of the struck proton wave is accompanied by a
strong distortion of the missing momentum distribution and these distortions are especially
strong at large pm. The quantitative description of these distortion e�ects requires a careful
quantum mechanical treatment of the interaction dynamics, which is reviewed in this talk.

2 Missing momentum distribution: kinematics and de�nitions

The A(e; e0p) coincidence cross section can be represented in the form [3, 14]

d�

dQ2d�dpd
p

= KjMepj
2S(Em; ~pm; ~p) : (1)

Here K is a kinematical factor, Mep is the ep elastic scattering amplitude, � and ~q are the
(e; e0) energy and momentum transfer, Q2 = ~q 2 � �2, the struck proton has a momentum ~p and
energy E(p) = Tkin +mp, the missing momentum and energy are de�ned as ~pm = ~q � ~p and
Em = � � Tkin � Tkin(A � 1) (where Tkin(A � 1) is the kinetic energy of the undetected (A-1)
residual system) and the z-axis is chosen along ~q.

Clean signal of FSI e�ects is seen in the inclusive missing momentum spectrum

W (~pm) =
1

(2�)3

Z
dEmS(Em; ~pm) =

1

(2�)3

Z
d~r 0d~r�(~r;~r 0) exp

�
i~pm(~r� ~r 0)

�
; (2)

where

�(~r;~r 0) =
Z
df~Rg	�(f~Rg; ~r 0)Sy(f~Rg; ~r 0)S(f~Rg; ~r)	(f~Rg; ~r) (3)

is the FSI-modi�ed one-body density matrix (OBDM). Here ~r = ~rA is the coordinate of the
struck proton, f~Rg = f~r1; ::::; ~rA�1g stands for coordinates of the spectator protons (for the sake
of brevity, we suppress the c.m.smotion constraints, the full machinery of the Jacobi coordinates
has been used in all the practical calculations), Ŝ(f~Rg; ~r) describes FSI of the struck proton with
the spectator nucleons. In the PWIA, when Ŝ = 1, eq. (3) reduces to the standard OBDMmatrix
for a ground state of a nucleus and eq. (2) gives the familiar SPMD N(pm), often referred to as
the PWIA momentum distribution.

We focus on an evaluation of the OBDM (3) and missing momentum distribution W (~pm).
In D(e; e0p) scattering, one can directly use the deuteron wave function from realistic potential
models. The real testing ground for the comparison of FSI and ISC e�ects is the 4He(e; e0p)
scattering. Here one can perform an exhaustive analysis of the interplay of FSI and ISC e�ects,
making use of the standard Jastrow correlated wave function 	(~r1; :::; ~rA) � 	o(~r1; ::::; ~rA)F̂ ;

where the mean �eld wave function 	o(~r1; ::::; ~rA) can be approximated by the harmonic oscil-

lator wave function, F̂ �
Q4
i<j

h
1�C(~ri� ~rj)

i
; and C(r) = Co exp

�
�r2=2r2c

�
: For a hard core

repulsion Co = 1, for a soft core Co < 1. One usually considers rc � 0:5-0:6 fm [15].

3 Final state interaction and the Glauber theory

For the reason of strongly absorptive NN interaction, at large Q2 and high Tkin �>(0.5-1)GeV
the familiar nonrelativistic potential approach to FSI breaks down. However, the wavelength of
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the struck proton is short compared to the size of the nucleon and internucleon separation and
the Glauber theory becomes applicable. De�ning ~ri � (~bi; zi), we can write

Ŝ(f~Rg; ~r) =
A�1Y
i=1

h
1� �(zi � z)�(~b�~bi)

i
: (4)

The �-function in (4) tells that the struck proton can have FSI only with the forward hemisphere
spectators. The standard parameterization of the pN pro�le function is

�(~b) =
�tot(1� i�)

4�b2o
exp

h
�

~b2

2b2o

i
(5)

Here � is the Re=Im ratio for the forward elastic pN scattering amplitude and b0 is the pN
interaction radius (b20 is the di�raction slope). The Glauber theory has no free parameters. The
long history of its successes is well documented [16]. At Tkin � 1GeV, the pN scattering data
give bo � 0:5fm, �tot � 40mb and � = :33 [16, 17]. These FSI parameters only weakly vary over
the GeV energy range of CEBAF. This makes FSI insensitive to the missing energy Em. We
have implicitly used this property in (2,3). Notice a proximity of the FSI and ISC radii: b0 � rc.

4 Short-ranged and long-ranged components of the FSI-modi�ed

one-body density matrix

The FSI-modi�ed OBDM can be written as

�(~r;~r 0) =
Z
df~Rg	�o(f~Rg; ~r

0) F̂ y(f~Rg; ~r 0) Ŝy(f~Rg; ~r 0) Ŝ(f~Rg; ~r) F̂ (f~Rg; ~r) 	o(f~Rg; ~r) (6)

The operator F̂ yŜyŜF̂ which emerges in (6) can be expanded as [7]

F̂ yŜyŜF̂ =
AY
i<j

h
1� Cy(~ri

0 � ~rj
0)
ih
1� C(~ri � ~rj)

i

�
A�1Y
i

h
1� �(zi � z0)�y(~b 0 �~bi)

ih
1� �(zi � z)�(~b�~bi)

i
=

1�
Xh

Cy+ C
i
�
Xh

�y + �
i
+
X

[Cy� + C�y] +
X

CyC +
X

�y� + :::: (7)

In this cluster expansion, the higher order terms in C;Cy;�;�y can be considered as "interac-
tions" which modify the OBDM �0(~r;~r

0) of the mean �eld approximation. There are interactions
which only involve one of the trajectories in the FSI-modi�ed OBDM, there are terms of the
form Cy(~r 0�~ri

0)C(~r�~ri), �(zi
0�z0)�(zi�z)�

y(~b 0�~bi
0)�(~b�~bi) and C

y(~b 0�~bi)�(~b4�~bi)+h.c.,
which lead to a short-ranged (on the scale rc and/or b0, as opposed to a large nuclear radius)
interaction between the two trajectories in the calculation of OBDM and govern the large pm
momentum spectrum [4, 5, 6, 7], there is a novel e�ect [7] of quantum-mechanical ISC-FSI
interference due to the Cy� + �yC interactions etc.

In order to set up a background, we recall the salient features of SPMD N(~pm) for the
example of the 4He nucleus [7, 11]. In the mean �eld approximation, one �nds a long ranged

OBDM �0(~r;~r
0) / exp

�
� 3

8R2
o

�
~r 2 + ~r0 2

��
and steeply decreasing SPMD

N(1;~pm) = w1 exp
�
�

4

3
R2
op

2
m

�
(8)
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Figure 1: The predicted FSI-modi�ed missing momentum distribution (solid curve) W (~pm) for
D(e; e0p) scattering [8]. Shown separately are (a,c) the S and D-wave contributions and (b,d)

the PWIA and the / ��� rescattering contributions at (a,b) � = 180o and (c,d) � = 90o.

with the Fermi momentum kF � 1=R0. (Hereafter N(1;~pm), N(C; ~pm),... indicate the con-
tributions to N(~pm) coming from the \1",\C",... terms in the expansion (7)). The leading
corrections to N(~pm) come from interactions linear in C(~r � ~rj); Cy(~r

0

� ~rj), which a�ect only
one of the trajectories in the calculation of the OBDM:

N(Cy+ C; ~pm) � �6w1C0

r
27

125

� rc
Ro

�3
exp

�
�
4

5
R2
op

2
m

�
: (9)

(For brevity, hereafter we suppress the correction factors [1+O(r2c=R
2
o)] to the slope and the nor-

malization). Notice the small, / (rc=R0)3, normalization in (9) and the destructive interference
between the N(1; ~pm) and N(Cy+C; ~pm), which becomes stronger with increasing pm, because
the latter has a smaller slope of the ~p 2m dependence than the former. The driving contribution
to the short ranged component of the OBDM and the related large-pm component of the SPMD,
comes from the Cy(~r 0 � ~ri

0)C(~r� ~ri) terms in (7),

N(CyC; ~pm) � w1

1

�3
1

R3
o

s
35

215

����
Z
d3~rC(~r) exp(i~pm~r)

����
2

= w1C
2
o

r
243

512

�
rc

Ro

�6

exp
�
�r2cp

2
m

�
:

(10)
Notice a close semblance of Eq. (10) to the momentum distribution in the deuteron with the
short-range correlation function C(~r) playing the rôle of the wave function (see below Eq. (11)),
which is the basis of the familiar quasi-deuteron interpretation of the ISC contribution to SPMD.

The fundamental issue is whether the ISC component (10) of SPMD survives the FSI distor-
tions or not and whether the correlation function C(~r) can be measured in A(e; e0p) scattering
or not.

5 Final state interaction e�ects in D(e; e0p) scattering [8,10]

The realistic models [18] of the deuteron wave function allow an accurate evaluation of FSI e�ects
[8]. The quadrupole deformation of the deuteron gives an interesting handle on the strength of
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Figure 2: The predicted FSI-modi�ed angular dependence of (solid curve) W (~pm) for the
deuteron target and of its (dotted curve) S-wave and (dashed curve) D-wave components at
di�erent values of pm [8].

FSI in the tensor polarized deuteron [10]. For unpolarized deuterons and spin-independent pn
scattering amplitude

W (~pm) =
1

4�(2�)3

Z
d3~rd3~r 0 exp[i~pm � (~r� ~r 0)]S(~r)Sy(~r 0)"

u(r)

r

u(r0)

r0
+

1

2

w(r)

r

w(r0)

r0

 
3
(~r � ~r 0)2

(rr0)2
� 1

!#
; (11)

where u and w are the familiar S andD wave functions and S(~r) = 1��(�z)�(~b): The anisotropy
of S(~r )Sy(~r 0) leads to the angular anisotropy of W (~pm) shown in Figs. 1,2.

The forward-backward asymmetry W (p?;�pz) 6= W (p?; pz) has its origin in the nonvanish-
ing real part of the p-n scattering amplitude � 6= 0, for which S(b; z)Sy(b 0; z0) 6= S(b0; z0)Sy(b; z).

Figure 3: The predicted forward-backward asymmetry AFB(pm) =
W (pm;�=0

o)�W (pm;�=180
o)

W (pm;�=0o)+W (pm;�=180o)
for

the unpolarized deuteron [8].
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Figure 4: Predictions for the full FSI-modi�ed momentum distributions (solid line) Wo (a),
W+ (b) and PWIA distributions No (c), N+ (d) vs. pm at � = 90o for the tensor polarized
deuteron target [10] . Shown separately are the S-wave (dotted line) and D-wave (dash-dotted
line) contributions.

The angular asymmetry mostly comes from FSI distortions of the S-wave amplitude which can
be decomposed into the PWIA and FSI terms as

U(~pm) =
Z
d3~r exp(�~pm � ~r)S(~r)

u(r)

r
= u(1; ~pm)� u(�; ~pm) (12)

The PWIA term u(1; ~pm) decreases on the scale p?; pm;z � 1=RD. The FSI term is small,
/ �tot(pn)=(2�R

2
D) � 0:035 [5, 8], but takes over at p? �> 1 fm�1, where

W (~pm) / ju(�; ~pm)j
2 /

d�el(pn! pn)

dp2
?

/ exp(�b20p
2
?
) : (13)

In Fig. 1, we show how the destructive interference of the PWIA and FSI amplitudes produces
a dip at p? � 1:3 fm�1 in transverse kinematics. Fig. 2 illustrates the angular anisotropy of
W (~pm). At small pm � 1 fm�1 the angular distribution is isotropic, with the increasing pm it
�rst develops an approximately symmetric dip at � = 90o, which through a very asymmetric
stage evolves into the sharp elastic rescattering peak at 90o at larger values of pm. Fig. 1d shows
the decomposition of the same 90o distribution into the PWIA and the FSI components.

Fig. 1b shows that for pm �> 1:5 fm�1, FSI e�ects are substantial also in parallel kinematics.
At large pm, they are entirely due to the "elastic rescattering" operator �(�z)�(�z0)�(b)��(b0)
in the integrand of (11). Indeed, �(�z)�(�z0) = �(�zmax), where

zmax =
1

2
(z + z 0) +

1

2
jz � z0j (14)

and the non-analytic function jz � z0j in zmax gives rise to a / p�2m;z tail of W (~pm) after the
Fourier transform in z � z0 (see also Section 9). It is worthwhile to mention that the �(z) in the
Glauber operator assumes idealized pointlike nucleons. The e�ect of the non-pointlike nucleons
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Figure 5: Predictions for the tensor polarized deuteron target [10]: (a) The FSI-modi�ed dis-
tributions W+(pm; � = 0o) (solid line), W+(pm; � = 180o) (dashed line) and Wo(pm; � = 90o)
(dash-dotted line) and the PWIA distributions N+(pm; � = 0o) = N+(pm; � = 180o) (dotted
line). (b) The FSI-modi�ed distributions Wo(pm; � = 0o) (solid line), Wo(pm; � = 180o) (dashed
line) and the PWIA distributions No(pm; � = 0o) = No(pm; � = 180o) (dotted line).

can be modelled by a smearing, for instance, �(z)! 1
2
[1+tanh( z

zo
)]: The educated guess for the

smearing width is 2z0 � rc. Because the realistic wave functions of the deuteron already include
a suppression of small size con�gurations by a short range repulsion, the uncertainties with the
smearing are small at least up to pm �< 3 fm�1.

The asymmetry in parallel kinematics, AFB = [W (� = 0o; pm) �W (� = 180o; pm]=[W (� =
0o; pm) + W (� = 180o; pm)] (Fig. 3), is quite strong. Implications of strong FSI e�ects in
longitudinal kinematics for the y-scaling analysis are discussed in [8].

Di�erent models for the deuteron wave function di�er mostly in the D-wave contribu-
tion [18]. The D-wave controls the quadrupole deformation of the deuteron and hopefully
can best be probed in ~D(e; e0p) scattering on tensor polarized deuterons (the spin quanti-
zation axis is taken along ~q). Here a key observable is the tensor analyzing power A �
(�+ + �� � 2�0)=(�+ + �� + �0) where �� is the cross section for the polarization state � (no-
tice that �+ = ��). The interplay of the quadrupole deformation and FSI distortions, which
are very di�erent for di�erent D-wave amplitudes, leads to a very rich pattern of FSI e�ects
[10]. The dependence of W�(~pm) (as well as of PWIA distributions N(~pm)) on the polarization
state is strong, see Figs. 4,5. Fig. 5a shows very clearly how FSI destroys the PWIA symmetry
relation N0(pm; � = 90o) = N�(pm; � = 0o; 180o). A substantial departure from the PWIA
distributions starts at pm �> 1 fm�1. In the PWIA, both N�(~pm) and tensor analyzing power A
exhibit a sensitivity to the model of the wave function, which is washed out by FSI e�ects, see
Figs. 6,7. In general, FSI caused departures from PWIA predictions are dramatically stronger
than the di�erence between the Bonn and Paris model predictions.
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Figure 6: Predictions [10] for the PWIA and FSI-modi�ed tensor analyzing power in ~D(e; e0p)
scattering vs. the missing momentum pm. Panel (a) shows APWIA(pm; � = 90o) calculated using
the Bonn wave function (dotted line) and calculated using the Paris wave function (dash-dotted
line) and also the FSI-modi�ed A(pm; � = 90o) calculated with the Bonn wave function (solid
line) and with the Paris wave function (dashed line). Panel (b) shows APWIA(pm; � = 0o) =
APWIA(pm; � = 180o) (dotted line) and FSI-modi�ed A for � = 0o (solid line) and � = 180o

(long-dashed line).

6 FSI in heavy nuclei: the formalism

Some properties of FSI are best seen in heavy nuclei, neglecting the ISC altogether. In this
limit, �(~r;~r 0) = �0(~r;~r

0

)�(~r;~r
0

), where

�0(~r;~r
0

) =
1

Z

X
n

�n(~r)�
�

n(~r
0

) (15)

is the familiar shell model OBDM, the FSI distortion factor equals

�(~r;~r
0

) =
Z A�1Y

j=1

�A(~rj)d
3~rjS

y(~r1; :::; ~rA�1; ~r
0

)S(~r1; :::; ~rA�1; ~r) (16)

and nA(~r) = A�A(~r) is the nuclear density. The Glauber formula (4) gives

�(~r;~r
0

) =

�
1�

1

A

Z
d2~b1�(~b�~b1)t(~b1; z)�

1

A

Z
d2~b�y(~b

0

�~b1)t(~b1; z
0

)

+
1

A

Z
d2~b1�

y(~b
0

�~b1)�(~b�~b1)t(~b1;max(z; z
0

)

�A�1
; (17)
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Figure 7: Predicted [10] momentum distributions for the tensor polarized deuteron target cal-
culated with the Bonn and Paris wave functions in PWIA (b) and including FSI (a) at � = 90o.
The results calculated with the Bonn wave function forWo and No are shown by solid lines, W+

and N+ are shown by dash-dotted lines, the results calculated with the Paris wave function for
Wo and No are shown by the dashed lines and for W+ and N+ are shown by dotted lines.

where t(~b; z) = A
1R
z
dz1�A(~b; z1) is a partial optical thickness. Because of the �y� interaction

between the two trajectories, which is a steep function of ~r� ~r
0

, the FSI factor (17) can not be
represented in a factored form in the variables ~r and ~r

0

. Because t(~b; z) is a smooth function of
~b as compared to �(~b), at A� 1 we obtain [9]

�(~r;~r
0

) = exp

�
�
1

2
�tot(pN)(1� i�)t(~b; z)�

1

2
�tot(pN)(1+ i�)t(~b

0

; z
0

)

+�(~b�~b
0

)�el(pN)t(
1

2
(~b+~b

0

); max(z; z
0

))

�
: (18)

Here the rapid dependence on ~b�~b
0

is concentrated in

�(~b) =

R
d2~���(~b� ~�)�(~�)R

d2~�j�(~�)j2
=

1

��el(pN)

Z
d2~q

d�el(pN)

dq2
exp(i~q~b) = exp

"
�
~b 2

4b20

#
: (19)

A comparison with the optical model DWIA is in order. Here one �rst constructs the phe-
nomenological optical potential Vopt(~r) averaging over positions of spectator nucleons (for the
review see [3]). Then, the wave equation for the struck proton wave is solved and produces the
eikonal phase factor

Sopt(~r) = exp

2
4� i

v

1Z
z

d�Vopt(~b; �)

3
5 (20)
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( v is the velocity of the struck proton) and factorized FSI factor

�opt(~r;~r
0

) = Sopt(~r)S
�

opt(~r
0

) : (21)

When Vopt(~r) is constructed in the Glauber approximation, then

S
(Gl)
opt (~r) = exp

�
�
1

2
�tot(pN)(1� i�pN)t(~b; z)

�
: (22)

Compared to the Glauber theory, the optical model approximation (21) misses the / �(~b�~b
0

)
term in the exponent of (18).

7 FSI in heavy nuclei: incoherent elastic rescatterings and

transverse missing momentum distribution [9]

For heavy nuclei, one can generalize Eq. (13) and develop [9] a systematic multiple elastic
rescattering expansion for W?(~p?) =

R
dpm;zW (~pm), which can be written in the form

W?(~p?) =
1

(2�)2

Z
d2~bdzd2~�exp(i~p?~�)�(~b+

1

2
~�; z;~b�

1

2
~�; z)

�S
(Gl)
opt (

~b+
1

2
~�; z)S

(Gl)y
opt (~b�

1

2
~�; z) exp

h
�(~�)�el(pN)t(~b; z)

i
: (23)

To the zeroth order in �(~�), Eq. (23) de�nes the local ~p? distribution [9]

W?;opt(~b; z; ~p?) =
1

(2�)2

Z
d2~�exp(i~p?~�)�(~b+

1

2
~�; z;~b�

1

2
~�; z)

���1A (~b; z)SGlyopt (
~b�

1

2
~�; z)SGlopt(

~b+
1

2
~�; z) ; (24)

which includes the FSI distortions at the optical level (22). This local distribution (24) is
normalized as

R
d2~p?W?;opt(~b; z; ~p?) = jSGlopt(

~b; z)j2 : Expansion of the last exponential factor in

Eq. (23) in powers of �(~�) gives the multiple incoherent elastic rescattering series W?(~p?) =
1P
�=0

W
(�)

?
(~p?) ; where the zeroth order term is an averaged local ~p? distribution,

W
(0)

?
(~p?) =

Z
d2~bdz�A(~b; z)W?;opt(~b; z; ~p?) ; (25)

and the contribution of �-fold component for � � 1 reads

W
(�)

?
(~p?) =

1

�!

Z
d2~bdz�A(~b; z)t

�(~b; z)
Z �Y

i=1

d2~qi

 
1

�

d�el(pN)

dq2i

!
W?;opt(~b; z; ~p? �

�X
j=1

~qj) : (26)

The convolution form of (26) suggest probabilistic reinterpretation, which is possible only in
the pm;z-integrated case, though. Distortions of the local distribution (24) are not small and
Eqs. (24-26) of [9] do substantially improve the simpli�ed version of multiple elastic rescattering
expansion �rst derived in [4]. Putting ~b = ~b

0

in the FSI factor (18) as it was done in several
works [19], one misses the FSI contributions to the large-p? spectrum.

10



8 FSI in heavy nuclei: the longitudinal missing momentum

distribution [9]

Next we consider the longitudinal missing momentum distribution

Wz(pm;z) =
Z
d2~p?W (~pm) =

1

2�

Z
d2~bdzdz

0

�(~b; z;~b; z
0

)�z(~b; z; z
0

) exp[i~pm;z(z � z
0

)] : (27)

Here, the FSI factor equals �z(~b; z; z
0

) = �
(in)
z;opt(

~b; z; z
0

)C1(~b; z; z
0

)C2(~b; z; z
0

) ; where [9]

�
(in)
z;opt(

~b; z; z
0

) = exp

�
�
1

2
�in(pN)t(b; z)�

1

2
�in(pN)t(b; z

0

) ;

�
(28)

C1(~b; z; z
0

) = exp

�
i

2
�tot(pN)�pN

�
t(b; z)� t(b; z

0

)
��

; (29)

C2(~b; z; z
0

) = exp

�
�
1

2
�el(pN)

���t(b; z)� t(b; z
0

)
���� : (30)

The optical FSI factor �
(in)
z;opt(

~b; z; z
0

) is a symmetric function of z; z0 and describes a distortion
of the struck proton wave due to inelastic interactions (absorption) of the struck proton in a
nucleus. In the approximation of C1 = C2 = 1, Eq. (27) de�nes the optical longitudinal missing

momentum distribution W
(in)
z;opt(pm;z), which is an even function of pm;z . For the purposes of the

qualitative analysis, for A � 1 useful approximations are C1(~b; z; z
0

) = exp
h
�ik1(z � z

0

)
i
and

C2(~b; z; z
0

) = exp
h
�k2jz � z

0

j
i
; where

k1 =
1

2
�tot(pN)�pNhnAi ; (31)

k2 =
1

2
�el(pN)hnAi ; (32)

and hnAi is the average nuclear density. Then, Wz(pm;z) can be represented as [9]

Wz(pm;z) �
1

2�

Z
dkW

(in)
z;opt(pm;z � k1 � k)c2(k) ; (33)

where c2(k) stands for the Fourier transform of the factor C2. The e�ect of the real part of the
pN -amplitude leads, via the factor C1, to an e�ective shift [5] of pm;z , by k1 � 20 MeV/c in the
GeV's energy range. This shift produces a substantial forward-backward asymmetry.

In the CEBAF domain of Q2, k2 � 10� 20 MeV/c� kF and c2(k) is a sharp function of k,
much narrower than the conventional SPMD,

c2(k) =
Z
d� exp(ik�) exp(�k2j�j) =

2k2
k2 + k22

: (34)

At jpm;zj �< kF it acts like the �-function and Wz(pm;z) � W
(in)
z;opt(pm;z � k1) : On the other hand,

at a su�ciently large jpm;zj �> kF , the pm;z dependence of Wz(pm;z) will be controlled rather by
the slow asymptotic decrease of c2(k) with the resulting tail Wz(pm;z) / p�2m;z . This asymptotics
derives only from the C2 being a non-analytical function of z � z0 and is not a�ected by the
�nite nucleus size, which changes somewhat the functional form of c2(k).

The integration over ~r;~r
0

in Eqs. (2,3) shows that the cross section of A(e; e0p) scattering is
a result of manifestly quantum interference of amplitudes with di�erent locations of the struck
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proton. The factor �(zi � z0)�(zi � z) excludes the �y� interaction over the part of either of
the two trajectories in the calculation of the OBDM. This exclusion is of a purely quantum-
mechanical origin and the / p�2m;z tail of W (~pm) de�es any classical interpretation. Evidently,
this large-pm;z tail would be missed if the optical model FSI factor (22) were used (see also the
above discussion of the large-p? tail). Following [9], we comment on what makes the Glauber
theory and optical model DWIA descriptions of FSI di�erent.

The Glauber theory distortion factor (4) also describes an eikonal solution of wave equation
for the struck proton, but for a �xed con�guration of spectator nucleons. Then, the reduced
nuclear matrix element squared is computed, the sum over �nal states is performed and, �nally,
averaging over positions of spectator nucleon is performed. Evidently, a rigorous quantum-
mechanical evaluation of the probability distribution for a subsystem (the struck proton in the
considered case) for the process including a complex system (the struck proton and spectator
nucleons in our case) requires calculations at the level of the density matrix of the subsystem.
The Glauber theory equations Eqs. (2,3,16) embody precisely this procedure for the quasielastic
(e; e0p) scattering at high energy of the struck proton, when interaction with spectators can be
treated in the �xed scatterer approximation. Because of the di�erent order of operations as
it was outlined in Section 6, the important contribution of �y� interaction between the two
trajectories in FSI-distorted OBDM is missed in the optical model DWIA.

For the quantitative discussion of FSI e�ects for heavy targets we refer to Ref. [9]. Here we
only wish to comment on the so-called local density approximation (LDA)

�(~r;~r
0

) = �A(
1

2
(~r + ~r

0

))W (~r� ~r
0

) ; (35)

what is generally believed to be a good approximation for heavy nuclei. The results of Ref. [9]
show this is not the case and the di�erence between W (~pm) obtained with the full shell model
density matrix (15) and its LDA form (35) is substantial even for A=40 and even for small pm.

9 An interplay of ISC and FSI e�ects: 4He(e; e0p) as a testing

ground [7,11]

The 4He is a simple enough nucleus in which W (~pm) can be calculated accurately to all orders
in the FSI and pair correlation function, although such a calculation is quite a formidable task
[11]. For the high density of the 4He, an exhaustive analysis of FSI e�ects in the 4He is a good
guidance to a numerical signi�cance of FSI e�ects in heavier nuclei.

The principal e�ects of ISC on SPMD were already reviewed in Section 4. Fig. 8 shows how
the large-pm tail of SPMD builds up from the mean �eld approximation, Co = 0, to soft core
correlation Co = 0:5 to hard core correlation Co = 1. The destructive interference between the
mean �eld (9) and the lowest order ISC (10) contributions is obvious at intermediate pm � kF .
Remarkably, the extra strength at large pm due to short range correlations, comes from a
depletion of SPMD at pm � kF , rather than from the region of pm � 0, in which SPMD is
rather enhanced by short range correlation e�ects [11].

Modulo to the di�erent p? and pm;z dependence, the lowest order FSI contribution W (�y+
�; ~pm) is very similar to N(Cy+ C; ~pm) of Eq. (9), but has larger normalization

W (�y + �; ~pm)

N(Cy+ C; ~pm)
�

�
�tot

4�b20

�
�

�
b0

R0

�2

�

�
R0

rc

�3
�
1

C0

�
R0

rc
�
1

C0

� 1 : (36)

The enhancement factor � R0=rc in (36) derives from the fact that the Glauber operator is a
long ranged function of the longitudinal separation in contrast to the short ranged correlation
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Figure 8: The PWIA momentum distribution N(~pm) in
4He for the mean �eld approximation

Co = 0 (dotted curve), for soft core correlations Co = 0:5 (dashed curve) and for hard core
correlations Co = 1 (solid curve) [11]. The other parameters are Ro = 1:29fm and rc = 0:5fm.

function. The driving short ranged FSI contribution to the OBDM and to the large-pm tail of
W (~pm) comes from the / �y(~b

0

�~b
0

i)�(
~b�~bi) terms in the expansion (7),

W (�y�; ~pm) /

����
Z
d2~b�(~b) exp(i~p?~b)

����
2

= 4�
d�el

dp2
?

=
1

4
�2tot(1 + �2) exp(�b2op

2
?
) ; (37)

c.f. with (13) for the deuteron and (26) for heavy nuclei. (Wherever justi�ed, we suppress
the correction factors [1 + O(b0=R0)2 � 1)].) Because of b0 � rc, the two leading large-p?
contributions, W (CyC; ~pm) = N(CyC; ~pm) and W (�y�; ~pm), have a very similar p? dependence,
but the normalization of the FSI term is much larger, c.f. Eq. (36),

W (�y�; ~pm)

W (CyC; ~pm)
�

1

C2
o

p
6
�

�
�tot

4�r2c

�2
�

�
Ro

rc

�2

� 7 : (38)

Consequently, the large-p? tail of W (~pm) must be completely dominated by FSI e�ects. A
nontrivial quantum-mechanical e�ect of ISC-FSI interference due to the terms/ Cy(~r 0�~ri

0)�(~b�
~bi); C(~r� ~ri)�y(~b 0 �~bi 0) also contributes to a large-p? tail,

w(C�y+ Cy�; ~pm) /

Z
d2~rCy(~r) exp(i~p?~r)

Z
d2~b�(~b) exp(�i~p?~b) / exp

�
�
1

2
(r2c + b2o)p

2
?

�
: (39)

The normalization of the FSI-ISC interference term contains the small factor rc=R0, but in the
4He case this suppression is weak,

W (C�y + Cy�; ~pm)

W (�y�; ~pm)
� 4

r
3

5
Co

 
4�r2c
�tot

!
�
rc

Ro

� 1 ; (40)

and the FSI-ISC interference e�ect is much more important than the pure ISC component
W (~pm). Any semiclassical consideration would completely miss this large ISC-FSI interference
e�ect. Now we present some of the results [11] for W (~pm). Unless speci�ed otherwise, they are
for hard core correlation, C0 = 1.

Gross features of the departure of W (~pm) from the PWIA distribution N(~pm) for
4He(e; e0p)

are very similar to those in the D(e; e0p) case. We proceed directly to the most interesting issue
of whether one can probe the strength C0 of short range correlations. The results shown in
Fig. 9. demonstrate that, in a striking contrast to the strongly correlation dependent PWIA
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Figure 9: Predictions [11] for the FSI-modi�ed missing momentum distribution W (~pm) in the
4He(e; e0p) reaction are plotted for hard core correlations, Co = 1, (solid line), soft core correla-
tions, Co = 0:5, (dashed line) and no correlations at all, Co = 0 (dotted line), for di�erent angles
�. The upper panel shows the results for � = 90o, � = 0o is shown in the middle panel and
� = 180o is shown in the lower panel. The other parameters are Ro = 1:29fm and rc = 0:5fm.

distribution N(~pm) of Fig. 8., the FSI-modi�ed W (~pm) is extremely insensitive to the strength
of short range correlation. Namely, in the transverse kinematics W (~pm) for hard core, Co = 1, is
only by � 50% larger than W (~pm) calculated with Co = 0, in contrast to a di�erence of several
orders of magnitude in the case of PWIA (see Fig.8). This enhancement is much stronger than
the pure ISC contribution of PWIA and is quite counterintuitive, because naively one would
expect that the hard core repulsion suppresses the classical probability of elastic rescattering of
the struck proton on the spectator nucleon! The found enhancement of W (~pm) from the mean
�eld, C0 = 0, to hard core, C0 = 1, case must be attributed to the above discussed ISC-FSI
interference e�ect, see Eq. (39).

The situation in longitudinal kinematics is very tricky, as here one encounters a still another
strong ISC-FSI correlation e�ect, this time connected with the real part of the pN elastic
scattering amplitude. In Fig. 10 we show W+(pm) =

1
2
[W (� = 0o; pm) +W (� = 180o)], which

is free of the FSI contribution / �. In the mean �eld approximation, C0 = 0, the large-pm tail
of W+(pm) is entirely due to the �-function e�ects and is numerically very close to the PWIA
distribution at C0 = 1. When both the FSI and ISC e�ects are simultaneously included, with
the increase of C0 the rising ISC contribution compensates partly for a suppression by short
range repulsion of the �-function component of the FSI contribution. The net e�ect is a weak
depletion of W+(pm) from the mean �eld, C0 = 0, value to the soft core correlation value at
C0 = 0:5. However, there is hardly any change in W+(pm) from the soft core to hard core
correlation result for W+(pm).

The substantial rôle of the real part of the pN scattering amplitude in this region of large
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Figure 10: The predictions [11] for the FSI-modi�ed distribution W+(pm) =
1
2
[W (� = 0o; pm) +

W (� = 180o)] in the 4He(e; e0p) reaction are shown for hard core correlations, Co = 1, (solid
line), soft core correlations, Co = 0:5, (dashed line) and no correlations at all, Co = 0, (dotted
line). The other parameters are Ro = 1:29fm and rc = 0:5fm. For comparison, the PWIA
momentum distribution N(~pm) for hard core correlations, Co = 1, is also shown (dash-dotted
line).

pm is obvious from the FSI-induced forward-backward asymmetry AFB(pm); which is shown
in Fig. 11. For soft and hard core correlations, AFB(pm) for the 4He target is remarkably

Figure 11: The predicted [11] forward-backward asymmetry AFB(pm) is shown for
4He for hard

core correlations, Co = 1, (solid line), soft core correlations, Co = 0:5, (dashed line) and no
correlations at all, Co = 0, (dotted line). The other ground state parameters are Ro = 1:29fm
and rc = 0:5fm.

similar to AFB(pm) in D(e; e0p) scattering shown in Fig. 3. In the deuteron case, the realistic
wave functions [18] directly include the e�ects of short distance proton-neutron interaction.
From this 4He � D comparison we can conclude that, �rst, our simple Ansatz wave function
correctly models gross features of short-distance nucleon-nucleon interaction in the 4He and,
second, the found change of the sign of AFB(pm) and its rise with the correlation strength at
large pm are on �rm grounds. It is this enhancement of AFB(pm) which e�ectively cancels the
e�ect of slight decrease of W+(pm) and produces the correlation independent W (� = 0o; pm). It
is this enhancement of AFB(pm) which ampli�es the slight decrease of W+(pm) and produces
the counterintuitive substantial decrease of W (� = 180o; pm) with the correlation strength C0.
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10 Implications for nuclear transparency studies

Nuclear e�ects in A(e; e0p) scattering are often discussed in terms of the transparency ratio
TA(~pm) = W (~pm)=N(~pm) ; shown for the 4He target in Fig. 12 [11]. Evidently, FSI e�ects in TA
do not reduce to an overall renormalization of the observed missing momentum distribution by
nuclear attenuation factor. Only at pm � 0 the found � 24% depletion can be interpreted as a
pure nuclear attenuation e�ect; at larger pm the FSI distortions e�ects leads to TA(~pm) which
exhibits both much stronger depletion and "antishadowing" behaviour TA(~pm)� 1, see Fig. 12.
In the (anti)parallel kinematics, nuclear transparency is very strongly a�ected by the real part of

Figure 12: The nuclear transparency TA(~pm) =
W (C0;~pm)

N(C0;~pm)
for 4He(e; e0p) scattering is shown for

hard core correlations, Co = 1, (solid line), soft core correlations, Co = 0:5, (dashed line) and
no correlations at all, Co = 0, (dotted line) [11]. The upper panel shows the results for � = 90o,
� = 0o is shown in the middle panel and � = 180o is shown in the lower panel. The other ground
state parameters are Ro = 1:29fm and rc = 0:5fm.

the pN scattering amplitude, the e�ect of which can not be interpreted in terms of attenuation
altogether. At moderate missing momenta, pm �< 1:3 fm�1, there is hardly any sensitivity to
the correlation strength, see also Fig. 11. The sensitivity to short range correlations must be
still weaker in heavier nuclei (for the related discussion see [20]).

In the experimental determination of nuclear transparency one inevitably runs into a sort
of vicious circle: The experimentally observed, FSI-distorted, W (~pm) must be compared to
the SPMD N(~pm) which is not directly measurable. (Still further complications ensue if the
measured cross section does not allow an integration over a su�ciently broad range of missing
energy Em.) The SPMD N(~pm) can only be calculated from certain models and can only partly
be checked against the experimentally measured W (~pm), implicitly and/or explicitly assuming
that the FSI e�ects can be factored out as an overall attenuation factor (for instance, see [13]).
The above discussion clearly shows that one must be very careful, because in large parts of the
phase space such an evaluation of nuclear transparency can lead astray.

11 FSI and multinucleon emission

In the quasi-deuteron picture, the large pm comes from interaction with the proton of the
correlated pair. Simultaneously, the spectator nucleon of the correlated pair is ejected carrying
the missing momentum ~pm, as it was discussed already in classic papers [1, 2]. Gross features
of the contribution of FSI to multinucleon emission in A(e; e0p) scattering were discussed in [4]
with the conclusion that it is FSI which at large pm becomes a dominant source of multinucleon
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emission. To the discussion of large p? in [4] we must add that the strong FSI contribution
to W (~pm) implies equally strong two-nucleon emission by FSI also in (anti)parallel kinematics.
Therefore, backward ejection of spectator protons in A(e; e0pp) scattering can not be taken for
a clean signature of interaction with the correlated pair in a ground state of the target nucleus.

Evidently, elastic rescatterings of the struck proton lead to a broad peak in the missing energy
spectrum at Em � p2m=2mp [4]. The emergence of such a peak is quite obvious in transverse
kinematics, but it persists in the longitudinal kinematics too. What shows that at large pm
the missing energy spectrum extends to a very large Em, and high Tkin of the struck proton is
crucial to exclude spurious e�ects from the Em dependence of FSI.

12 Discussion of the results and conclusions

We reviewed the recent progress in the theory of FSI in quasielastic A(e; e0p) scattering [4]-
[11]. We presented compelling evidence that for large-pm the observed missing momentum
distribution is dominated by �nal state interaction of the struck proton with spectator nucleons
and by the intricate interplay and quantal interference of FSI and ground state correlation
e�ects. In transverse kinematics, the FSI contribution to W (~pm) exceeds the ISC contribution
to the SPMD by the order of magnitude. Even here, a substantial part of the FSI e�ect comes
from a quantum mechanical FSI-ISC interference e�ect in the one body density matrix, which
de�es a semiclassical interpretation. The pattern of FSI-ISC interference e�ects is still more
complex for longitudinal kinematics, where we found a novel e�ect of strong enhancement of the
forward-backward asymmetry by short range correlations in the ground state. In antiparallel
kinematics, this ISC-FSI interference e�ect, which comes from the real part of the pN scattering
amplitude, leads to the FSI-modi�ed W (~pm) which decreases with the correlation strength in
the opposite to the SPMD. We are led to the conclusion that FSI e�ects make impossible a

model-independent determination of the SPMD N(~pm) and extraction of the short

range correlation e�ects from the experimentally measured missing momentum distribution
W (~pm). Large FSI e�ects are of quite a general origin and are not an artifact of the Ansatz
wave function used in our evaluations. We emphasize a simple and well understood origin of
large enhancement parameters (36,38), which is a large radius of the nucleus as compared to a
small radius of short range correlations.

One corollary of dominance of FSI e�ects at large pm scattering is a similarity of missing
momentum spectra in 2H(e; e0p) and 4He(e; e0p) reactions (scaled up by the factor � 3 for
the deuteron). Such a similarity emerges not because of the quasi-deuteron mechanism in the
4He, but because of the universality of �nal state proton-nucleon interaction in both nuclei [21].
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tation to the exciting Conference on Perspectives in Nuclear Physics at Intermediate Energies,
held in the stimulating environment of the International Centre for Theoretical Physics.

References

[1] K.Gottfried, Ann.Phys. 21 (1963) 29; W.Czy_z and K.Gottfried, Nucl.Phys. 21 (1961) 676;
Ann.Phys. 21 (1963) 47.

[2] N.Srivastava, Phys.Rev. 135B (1964) 612; D.U.L.Yu, Ann. Phys. (NY) 38 (1966) 392;
J.W.Van Orden, W.Truex and M.K.Banerjee, Phys. Rev. C21 (1980) 2628.

17



[3] S.Frullani and J.Mougey, Adv. Nucl. Phys., Editors J.W.Negele and E.Vogt 14, 3 (1984);
A.E.I.Dieperink and P.K.A. de Witt Huberts, Annu. Rev. Nucl. Part. Sci. 40 (1990) 239;
S.Bo�, C.Giusti and F.D.Pacati, Phys.Rep. 226 (1993) 1.

[4] N.N.Nikolaev, A.Szczurek, J.Speth, J.Wambach, B.G.Zakharov and V.R.Zoller, Nucl.Phys
A582 (1995) 665.

[5] N.N.Nikolaev, A.Szczurek, J.Speth, J.Wambach, B.G.Zakharov and V.R.Zoller, Phys.Rev.
C50 (1994) R1296.

[6] J.Nemchik, N.N.Nikolaev and B.G.Zakharov, Proceedings of the Workshop on CEBAF at
Higher Energies, CEBAF, April 14-16, 1994, Editors: N.Isgur and P.Stoler, pp. 415-464.

[7] A.Bianconi, S.Jeschonnek, N.N.Nikolaev and B.G.Zakharov, Phys. Lett. B338 (1994) 123.

[8] A.Bianconi, S.Jeschonnek, N.N.Nikolaev and B.G.Zakharov, Phys. Lett. B343 (1995) 13.

[9] N.N.Nikolaev, J.Speth and B.G.Zakharov, J�ulich preprint KFA-IKP(Th)-1995-01

(1995), submitted to Nucl. Phys. A.

[10] A.Bianconi, S.Jeschonnek, N.N.Nikolaev and B.G.Zakharov, J�ulich preprint KFA-

IKP(Th)-1995-02 (1995), submitted to Phys. Rev. C.

[11] A.Bianconi, S.Jeschonnek, N.N.Nikolaev and B.G.Zakharov, J�ulich preprint KFA-

IKP(Th)-1995-13.

[12] R.J.Glauber, in: Lectures in Theoretical Physics, v.1, ed. W.Brittain and L.G.Dunham.
Interscience Publ., N.Y., 1959; R.J.Glauber and G.Matthiae, Nucl. Phys. B21 (1970) 135.

[13] N.C.R.Makins et al., Phys. Rev. Lett 72 (1994) 1986; T.G. O'Neill et al., Phys. Lett.
B351 (1995) 93; N.C.R.Makins and R.G.Milner, preprint MIT-LNS 94-79.

[14] T. de Forest Jr., Nucl.Phys. A392 (1983) 232.

[15] R.I.Dzhibuti and R.Ya.Kezerashvili, Sov. J. Nucl. Phys. 20 (1974) 17; M.Traini and
G.Orlandini, Z. Phys. A321 (1985) 479; G.C�o, A.Fabrocini and S.Fantoni, Nucl. Phys.
A568 (1994) 73.

[16] G.D.Alkhazov, S.I.Belostotsky and A.A.Vorobyev, Phys. Rep. C42 (1978) 89.

[17] T.Lasinski et al., Nucl. Phys. B37 (1972) 1; C.Lechanoine-LeLuc and F.Lehar, Rev. Mod.

Phys. 65 (1993) 47.

[18] R.Machleidt, K.Holinde, and C.Elster, Phys. Rep. 149 (1987) 1; M.Lacombe, B.Loiseau,
R.Vinh Mau, J.Cote, P.Pires and R.de Tourreil, Phys. Lett. B101 (1981) 139.

[19] A.Kohama, K.Yazaki and R.Seki, Nucl. Phys. A551 (1993) 687; A.S.Rinat and
B.K.Jennings, Nucl. Phys. A568 (1994) 873.

[20] N.N.Nikolaev, A.Szczurek, J.Speth, J.Wambach, B.G.Zakharov and V.R.Zoller, Phys.

Lett. B317 (1993) 281.

[21] A.Bianconi, S.Jeschonnek, N.N.Nikolaev and B.G.Zakharov, J�ulich preprint KFA-

IKP(Th)-1995-14 (1995).

18


