805 research outputs found

    Generic flow profiles induced by a beating cilium

    Full text link
    We describe a multipole expansion for the low Reynolds number fluid flows generated by a localized source embedded in a plane with a no-slip boundary condition. It contains 3 independent terms that fall quadratically with the distance and 6 terms that fall with the third power. Within this framework we discuss the flows induced by a beating cilium described in different ways: a small particle circling on an elliptical trajectory, a thin rod and a general ciliary beating pattern. We identify the flow modes present based on the symmetry properties of the ciliary beat.Comment: 12 pages, 6 figures, to appear in EPJ

    Observations of Mass Loss from the Transiting Exoplanet HD 209458b

    Full text link
    Using the new Cosmic Origins Spectrograph (COS) on the {\it Hubble Space Telescope (HST)}, we obtained moderate-resolution, high signal/noise ultraviolet spectra of HD 209458 and its exoplanet HD 209458b during transit, both orbital quadratures, and secondary eclipse. We compare transit spectra with spectra obtained at non-transit phases to identify spectral features due to the exoplanet's expanding atmosphere. We find that the mean flux decreased by 7.8±1.37.8\pm 1.3% for the C II 1334.5323\AA\ and 1335.6854\AA\ lines and by 8.2±1.48.2\pm 1.4% for the Si III 1206.500\AA\ line during transit compared to non-transit times in the velocity interval --50 to +50 km s1^{-1}. Comparison of the C II and Si III line depths and transit/non-transit line ratios shows deeper absorption features near --10 and +15 km s1^{-1} and less certain features near --40 and +30--70 km s1^{-1}, but future observations are needed to verify this first detection of velocity structure in the expanding atmosphere of an exoplanet. Our results for the C II lines and the non-detection of Si IV 1394.76\AA\ absorption are in agreement with \citet{Vidal-Madjar2004}, but we find absorption during transit in the Si III line contrary to the earlier result. The 8±18\pm 1% obscuration of the star during transit is far larger than the 1.5% obscuration by the exoplanet's disk. Absorption during transit at velocities between --50 and +50 km s1^{-1} in the C II and Si III lines requires high-velocity ion absorbers, but models that assume that the absorbers are high-temperature thermal ions are inconsistent with the COS spectra. Assuming hydrodynamic model values for the gas temperature and outflow velocity at the limb of the outflow as seen in the C II lines, we find mass-loss rates in the range (8--40)×1010\times 10^{10} g s1^{-1}.Comment: 25 pages, 4 figures, Astrophysical Journal in pres

    Searching for Far-Ultraviolet Auroral/Dayglow Emission from HD209458b

    Full text link
    We present recent observations from the HST-Cosmic Origins Spectrograph aimed at characterizing the auroral emission from the extrasolar planet HD209458b. We obtained medium-resolution (R~18-20,000) far-ultraviolet (1150-1700A) spectra at both the Phase 0.25 and Phase 0.75 quadrature positions as well as a stellar baseline measurement at secondary eclipse. This analysis includes a catalog of stellar emission lines and a star-subtracted spectrum of the planet. We present an emission model for planetary H2 emission, and compare this model to the planetary spectrum. No unambiguously identifiable atomic or molecular features are detected, and upper limits are presented for auroral/dayglow line strengths. An orbital velocity cross-correlation analysis finds a statistically significant (3.8 sigma) feature at +15 (+/- 20) km/s in the rest frame of the planet, at 1582 A. This feature is consistent with emission from H2 B-X (2-9) P(4) (lambda_{rest} = 1581.11 A), however the physical mechanism required to excite this transition is unclear. We compare limits on relative line strengths seen in the exoplanet spectrum with models of ultraviolet fluorescence to constrain the atmospheric column density of neutral hydrogen between the star and the planetary surface. These results support models of short period extrasolar giant planets with weak magnetic fields and extended atomic atmospheres.Comment: Accepted to ApJ. 12 pages, 5 figures, 4 table

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    The WEBT Campaign on the Blazar 3C279 in 2006

    Full text link
    The quasar 3C279 was the target of an extensive multiwavelength monitoring campaign from January through April 2006, including an optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic time scale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter- behind longer-wavelength variability throughout the RVB ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of ~ 1.5 - 2.0, may indicate a highly oblique magnetic field configuration near the base of the jet. An alternative explanation through a slow (time scale of several days) acceleration mechanism would require an unusually low magnetic field of < 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C279 and other FSRQs with similar properties.Comment: Accepted for publication in Ap

    OBSERVATIONS OF THE WIND FROM THE TRANSITING EXOPLANET HD 209458b

    Get PDF
    ABSTRACT Using the new Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we obtained the first moderate resolution, high signal/noise ultraviolet spectra of HD 209458 and its exoplanet HD 209458b during transit, both orbital quadratures, and secondary eclipse. We compare transit spectra with spectra obtained at nontransit phases to identify spectral features due to the planet&apos;s atmosphere and wind. We find decreased flux by 8 ± 2% in the C II 1334.5323Å and 1335.6854Å lines and in the Si III 1206.500Å line during transit compared to nontransit times in the velocity interval -50 to +50 km s −1 . The 8 ± 2% obscuration of the star during transit is far larger than the 1.5% obscuration by the exoplanet&apos;s disk. Absorption during transit at velocities between -50 and +50 km s −1 could be explained by a Roche lobe filled with wind material that is optically thick in the C II and Si III lines or by an extended cometary tail. We identify mass loss from the exoplanet&apos;s atmosphere at speeds near 42 ± 4 km s −1 , the escape speed predicted from the planet&apos;s mass and radius, with a mass loss rate of 3.2 × 10 11 g s −1

    Glutamine versus Ammonia Utilization in the NAD Synthetase Family

    Get PDF
    NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS). Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine) in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown) glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine) is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS structural elements associated with glutamine-utilizing capabilities

    Overview of the Far Ultraviolet Spectroscopic Explorer Mission

    Get PDF
    The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905 - 1187 A with high spectral resolution. The instrument consists of four coaligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 A and the other two use SiC coatings for optimized throughput between 905 and 1105 A. The gratings are holographically ruled to largely correct for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way as well as active galactic nuclei and QSOs for absorption line studies of both Milky Way and extra-galactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I and the strong electronic transitions of H2 and HD.Comment: To appear in FUSE special issue of the Astrophysical Journal Letters. 6 pages + 4 figure
    corecore