39 research outputs found

    Processing of Watermelon Rind Dehydrated Candy

    Full text link
    Watermelon rind (Citrullus lanatus) dehydrated candy was prepared by using osmotic dehydration process that involves slow impregnation of syrup before drying at 50°C for 8, 14 and 20 hours. From the study, it can be seen that drying time significantly affected the moisture content of the watermelon rind dehydrated candy. The moisture content was significantly decreased with drying time. For colour evaluation, the L* value of watermelon rind dehydrated candy was slightly decreased with drying time while the a* value was slightly increased. Watermelon rind dehydrated candy that dried for 14 hours was the most preferred sample by the panelists as it received the highest score for texture, taste and overall acceptability attributes. So, it can be concluded that 14 hours of drying time is the most appropriate time to dry the candied watermelon rind

    Development of Standard Approach for Sickle Blade Manufacturing

    Get PDF
    The sickle blade used in the motorised palm cutter known as “CANTAS” provides fast, easy and safe pruning and harvesting for those hard to reach applications. Jariz Technologies Company is experiencing problem in the consistency of sickle blade which was supplied by various blade manufacturers. Identifying the proper blade material with a certain hardness value would produce a consistent as well as long lasting sickle blade. A Standard Operating Procedure (SOP) in the manufacturing of the sickle blades was suggested to ensure a consistent blade. From this study, the optimum temperature for hardening and tempering of SUP 9 had been identified as 850 °C for hardening and 480 °C for tempering. The final hardness after heat treatment for SUP 9 was around 55HRC

    Recent progress on stability and thermo-physical properties of mono and hybrid towards green nanofluids

    Get PDF
    Many studies have shown the remarkable enhancement of thermo-physical properties with the addition of a small quantity of nanoparticles into conventional fluids. However, the long-term stability of the nanofluids, which plays a significant role in enhancing these properties, is hard to achieve, thus limiting the performance of the heat transfer fluids in practical applications. The present paper attempts to highlight various approaches used by researchers in improving and evaluating the stability of thermal fluids and thoroughly explores various factors that contribute to the enhancement of the thermo-physical properties of mono, hybrid, and green nanofluids. There are various methods to maintain the stability of nanofluids, but this paper particularly focuses on the sonication process, pH modification, and the use of surfactant. In addition, the common techniques to evaluate the stability of nanofluids are undertaken by using visual observation, TEM, FESEM, XRD, zeta potential analysis, and UV-Vis spectroscopy. Prior investigations revealed that the type of nanoparticle, particle volume concentration, size and shape of particles, temperature, and base fluids highly influence the thermo-physical properties of nanofluids. In conclusion, this paper summarized the findings and strategies to enhance the stability and factors affecting the thermal conductivity and dynamic viscosity of mono and hybrid of nanofluids towards green nanofluids

    Stability and thermo-physical properties of green bio-glycol based TiO2-SiO2 nanofluids

    Get PDF
    The investigation on thermal properties of nanoparticles dispersed in the mixture of water and green Bio-glycol are limited in the literature and only available for single nanofluids. The purpose of this study is to investigate the stability and thermo-physical properties of green Bio-glycol based TiO2-SiO2 nanofluids. In the present study, the hybrid nanofluids were prepared at various volume concentrations of 0.5 to 3.0% by dispersing TiO2 and SiO2 nanoparticles (20:80) in water and Bio-glycol (40:60) mixture base fluids. The stability of green Bio-glycol based TiO2-SiO2 nanofluids showed physically to be in good range of stability for suspension nanoparticles with zeta potential o

    Region of interest extraction for biometric cryptosystem

    Get PDF
    Biometric technology is becoming more and more significant these days. Most of the application in store today are using biometric as a means of person authentication as it offer a convenient and easy way of authentication. Palm vein biometry is mostly used in many authentication system as it offer better security as veins are located on the subcutaneous layer of the skin and is impossible to be forged. However, there are still some issues in order to obtain high accuracy in palm vein authentication system such as some feature are not correctly extracted because of poor preprocessing process. Poor preprocessing process will produce weak keys for authentication purpose. Therefore, this paper proposed a hybrid of Gabor filter and maximum inscribe circle to obtain better region of interest for feature extraction as well as improving the accuracy of the authentication system

    Thermo-physical properties of TiO2-SiO2 hybrid nanofluids dispersion with water/bio-glycol mixture

    Get PDF
    Introducing nanoparticles in liquid-based mixtures began to gain attention in various industries. This is supported by previous studies to improve the performance and provide energy saving for the system. Among its uses is in the VCRS and automotive air conditioning (AAC) system. The lubricant used in this system has the potential to have a good effect on the performance. Before testing the nano-lubricant enhancement performance, an automotive air conditioning (AAC) system test rig based on hybrid electric vehicles (HEV) AC system has to be developed; therefore, this paper presented the development process of AAC test rig specific for the HEV. In order to analyze the performance, 11 thermocouples, digital pressure gauges with the data logger, and AC/DC power clamp were assembled and used. After that, the experiment was conducted with five different initial refrigerant charges and three different compressor speeds. This method was applied to both pure POE lubricant and SiO2/POE nano-lubricant. Then, the heat absorbs, compressor work, and coefficient of performance (COP) were evaluated. The highest average COP for SiO2/POE nano-lubricant was achieved at a 40 % duty cycle (2520 RPM) speed with a value of 2.84. The highest enhancement of the COP is 25.1% at 60% duty cycle (3180 RPM) speed with 160 grams of initial refrigerant charged an average enhancement of the COP is 13.16%

    Permeance Based Algorithm For Computation Of Flux Linkage Characteristics Of Non-Linear 6/4 Switched Reluctance Motor (SRM)

    Get PDF
    The concept of permeance is used in the analysis of flux linkage of 6/4 SRM. The aim of this paper is to develop an efficient algorithm exploiting the nonlinear feature of the 6/4 SRM using the aforementioned concept of permeance. The first step is to generate the relevant equations related to permeances of the 6/4 SRM under study. The 6/4 SRM’s magnetization curve is then derived from the summation of mmf drops at various blocks representing the motor. The air gap permeances are derived at various angles and 3-D leakage effects are taken into account. These permeances are used for the mmf drop computation. The algorithm is capable of efficiently computing mmf drop at every block to consequently yield a complete accurate nonlinear flux linkage feature of the 6/4 switched reluctance motor. In this way, the capability of the SRM to produce the expected four times the specific output torque due to operation in high saturation region compared to an equivalent induction motor as special the attribute of the SRM is demonstrated

    MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    Full text link
    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20 to 140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we are one of the first to present data from multi-energy photon-processing small animal CT systems, we make the raw, partial and fully processed data available with the intention that others can analyze it using their familiar routines. The raw, partially processed and fully processed data of lamb tissue along with the phantom calibration data can be found at [http://hdl.handle.net/10092/8531].Comment: 11 pages, 6 fig

    Forced convection heat transfer and friction factor of water/bio-glycol mixture based TiO2-SiO2 nanofluids

    Get PDF
    The research on nanofluids as heat transfer fluid has been done for many years and the manipulation of nanoparticles kept evolving as time passes by. After an exceptional heat transfer performance enhancement was found in single nanofluids, combining two types of nanoparticles in a base fluid has garnered researcher’s attention all over the globe. The study on performance of heat transfer for a combination of two types of nanoparticle in a mixture of water and Bio-glycol has yet to be established; hence, the present study was conducted to investigate the heat transfer performance of TiO2-SiO2 nanofluids in 60:40 mixture of water and Bio-Glycol. The TiO2-SiO2 nanofluids was prepared by using the two-step method at three different particle concentration, namely 0.5%, 1.0% and 1.5%. Forced convection heat transfer experiment was carried out at bulk temperature 30°C and Reynolds number in the range of 1000 to 8000. A constant heat flux was supplied to the test section throughout the experiment. The Nusselt number of TiO2-SiO2 nanofluids was found at particle concentration 1.5%, 70.11% enhanced from the base fluid. The average enhancement of heat transfer coefficient for each particle concentration 0.5%, 1.0% and 1.5% are 40.3%, 63.4% and 70.3%, respectively. Heat transfer coefficient enhancement for 1.0% and 1.5% particle concentration almost similar at low concentration, however, as Reynolds number increase, the augmentation gap increases. The results of friction factor displayed a decrease trend with the increase of Reynolds number. While the friction factor of TiO2-SiO2 nanofluids insignificantly increased from the base fluid, the increment between particles concentration almost negligible
    corecore