11,025 research outputs found

    Resonance at the Rabi frequency in a superconducting flux qubit

    Full text link
    We analyze a system composed of a superconducting flux qubit coupled to a transmission-line resonator driven by two signals with frequencies close to the resonator's harmonics. The first strong signal is used for exciting the system to a high energetic state while a second weak signal is applied for probing effective eigenstates of the system. In the framework of doubly dressed states we showed the possibility of amplification and attenuation of the probe signal by direct transitions at the Rabi frequency. We present a brief review of theoretical and experimental works where a direct resonance at Rabi frequency have been investigated in superconducting flux qubits. The interaction of the qubit with photons of two harmonics has prospects to be used as a quantum amplifier (microwave laser) or an attenuator.Comment: This paper is the extended version of the talk given by one of the authors at the Conference On Nuclei And Mesoscopic Physics, 5-9 May 2014, Michigan State University, East Lansing, US

    Gulf War syndrome: an emerging threat or a piece of history?

    Get PDF
    ‘Gulf War syndrome’ is a phrase coined after the 1991 Gulf War to group together disparate, unexplained health symptoms in Gulf veterans. This paper examines the many hypotheses that have been put forward about the origins of the concept and gives an overview of the studies that have attempted to explain the lasting health effects associated with Gulf service. Our review finds that although in the UK there has not yet been evidence of a new Gulf War syndrome as a result of the current conflicts in Iraq and Afghanistan, there is a rise in post-conflict psychiatric disorders now being reported in the USA. We postulate that after conflicts military personnel will always face some form of post-conflict syndrome and the nature of the threats experienced is likely to dictate the form the syndrome might take. We also postulate that media reporting is likely to have influenced and to continue unhelpfully to influence the health of service personnel

    Signal amplification in a qubit-resonator system

    Get PDF
    We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the second probing signal can essentially change the amplitude of this signal. We calculate the transmission amplitude of the probe signal through the resonator as a function of the qubit's energy and the driving frequency detuning. The regions of increase and attenuation of the transmitted signal are calculated and demonstrated graphically. We present the influence of the signal parameters on the value of the amplification, and discuss the values of the qubit-resonator system parameters for an optimal amplification and attenuation of the weak probe signal.Comment: 7 pages, 8 figure

    Formation of laser plasma channels in a stationary gas

    Full text link
    The formation of plasma channels with nonuniformity of about +- 3.5% has been demonstrated. The channels had a density of 1.2x10^19 cm-3 with a radius of 15 um and with length >= 2.5 mm. The channels were formed by 0.3 J, 100 ps laser pulses in a nonflowing gas, contained in a cylindrical chamber. The laser beam passed through the chamber along its axis via pinholes in the chamber walls. A plasma channel with an electron density on the order of 10^18 - 10^19 cm-3 was formed in pure He, N2, Ar, and Xe. A uniform channel forms at proper time delays and in optimal pressure ranges, which depend on the sort of gas. The influence of the interaction of the laser beam with the gas leaking out of the chamber through the pinholes was found insignificant. However, the formation of an ablative plasma on the walls of the pinholes by the wings of the radial profile of the laser beam plays an important role in the plasma channel formation and its uniformity. A low current glow discharge initiated in the chamber slightly improves the uniformity of the plasma channel, while a high current arc discharge leads to the formation of overdense plasma near the front pinhole and further refraction of the laser beam. The obtained results show the feasibility of creating uniform plasma channels in non-flowing gas targets.Comment: 15 pages, 7 figures, submitted to Physics of Plasma

    Quantum behaviour of a flux qubit coupled to a resonator

    Get PDF
    We present a detailed theoretical analysis for a system of a superconducting flux qubit coupled to a transmission line resonator. The master equation, accounting incoherent processes for a weakly populated resonator, is analytically solved. An electromagnetic wave transmission coefficient through the system, which provides a tool for probing dressed states of the qubit, is derived. We also consider a general case for the resonator with more than one photon population and compare the results with an experiment on the qubit-resonator system in the intermediate coupling regime, when the coupling energy is comparable with the qubit relaxation rate.Comment: 16 pages, 6 figure
    corecore