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The detailed theory for the system of a superconducting qubit coupled to the transmission line resonator is 
presented. We describe the system by solving analytically and numerically the master equation for the density 
matrix, which includes dissipative Lindblad term. We calculate the transmission coefficient, which provides the 
way to probe the dressed states of the qubit. The theoretical results are related to the experiment with the 
intermediate coupling between the qubit and the resonator, when the coupling energy is of the same order as the 
qubit relaxation rate. 
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1. Introduction 

The present level of nanotechnology brings together the 
quantum optics and mesoscopic solid state physics. The 
systems currently under extensive investigations are the 
superconducting circuits based on Josephson junctions (Jo-
sephson qubits) which are the macroscopic quantum ob-
jects, quantum behaviors of which have been demonstrated 
in experiments (for review see, e.g., Refs. 1–4). Supercon-
ducting qubits being quantum mesoscopic objects present 
possibility to realize several unique quantum phenomena, 
such as entanglement [5,6], Rabi oscillations [7–12], spin 
echo and Ramsey fringes [13,14], Landau–Zener–Stückel-
berg interferometry [15–19], etc. Presently large interest 
brings over to the problem of the behavior of such artificial 
atoms in a quantized electromagnetic field in the frame of 
so-called circuit quantum electrodynamics (CQED) [20]. 
In CQED a superconducting qubit acting as an artificial 
atom is electrostatically coupled to a high-quality transmis-
sion line resonator. The large effective dipole moment of 
the qubit and high-energy density of the resonator allowed 
this system to reach the strong coupling limit of CQED in a 
solid-state system. This idea was proposed recently and 
studied theoretically [21–25] and experimentally for the 

charge qubit coupled capacitively to the resonator [26–28]. 
Then inductive coupling for the flux qubit was proposed 
[29] and realized [30,31]. 

In this paper we consider the quantum state of the com-
plex system of a superconducting flux qubit coupled to the 
transmission line resonator. Our aim is firstly to present the 
detailed theory of the qubit's states, dressed by the interac-
tion with the quantum resonator, and their influence on the 
observable transmittance. And secondly we aim to describe 
the regime of intermediate coupling studied recently expe-
rimentally by Oelsner et al. [31]. Accordingly, the paper is 
organized as following. In the next Section the model of 
the system is presented. In Sec. 3 we calculate the energy 
levels of the system, matching of which with the driving 
photons allows for the system’s spectroscopy. The Hamil-
tonian of the driven system is rewritten in Sec. 4 in differ-
ent representations, in particular, in the rotating-wave ap-
proximation (RWA) which is convenient for finding the 
stationary solutions. The solution of the master equation is 
presented in Sec. 5 analytically for weak driving and nu-
merically for strong driving. At the end of the paper there 
are Conclusions and Appendix, in which we present details 
of the theory of the transmittance through the resonator. 
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2. Description of the system 

We consider the flux qubit coupled inductively to the 
quantum resonator, see Fig. 1. The flux qubit is the super-
conducting loop with three Josephson junctions [32]. The 
basic states of the qubit correspond to different directions 
of the current in the loop. The current state of the qubit 
influences the quantum state of the resonator. The quantum 
resonator we consider to be formed between two interrup-
tions in the transmission line. The qubit is situated close to 
the center of the resonator; note that the qubit dimensions 
are significantly smaller than the resonator wavelength, so 
we can safely ignore its size. 

Total Hamiltonian of the driven system, without taking 
into account relaxation processes, has the form 
 qb w= ,rH H H− μ+  (1) 

where the qubit-resonator Hamiltonian 
 qb qb int=r rH H H H− + +  (2) 

consists of the bare qubit and resonator terms and the inte-
raction term. The flux qubit Hamiltonian in the flux basis 
{ },↓ ↑  has the form [32] 

 qb = ,
2 2x zH Δ ε

− τ − τ  (3) 

where Δ  is the tunnelling amplitude, the energy bias 
0= 2 ( / 2)pIε Φ − Φ  is defined by the magnetic flux ,Φ  

pI  is the persistent current, ,x zτ  are Pauli matrices in the 
flux basis ( =zτ ↓ − ↓ ); the current operator is 

qb = p zI I− τ . 
The qubit is considered to be coupled to the transmis-

sion line resonator. The detailed theory is presented in the 
Appendix (see also Refs. 31, 33, 34). The one-mode reso-
nator is described by the following Hamiltonian: 

 † 1= ,
2r rH a a⎛ ⎞ω +⎜ ⎟

⎝ ⎠
 (4) 

where a  and †a  are the annihilation and creation opera-
tors, which act at the number (Fock) states as following: 

= 1a n n n −  and † 1 =a n n n− . 
The term, which describes the interaction of the resona-

tor and the flux qubit, is 

 †
int qb= (0) = ( ) ,zH MI I g a a− + τ  (5) 

 0= ,r pg MI I  (6) 

where M  is the mutual inductance, (0)I  is the transmis-
sion line current operator, given by Eq. (74) (see Appen-
dix), at the qubit's position, = 0.x  

The transmission line is considered to be driven by two 
fields. One is the probing field with the amplitude 1V +  and 
the frequency ω  close to the resonator characteristic fre-
quency rω , as described in the Appendix. The amplitude 
of this field is assumed so small that its effect on the qubit 
can be neglected. (This is similar to the situation of coupl-
ing to the classical resonator considered in [35], where the 
small rf current was used to probe the resonator and also ac 
flux was applied to drive the qubit.) Another field de-
scribes driving the qubit with the amplitude ξ  and the fre-
quency .dω  The Hamiltonian of this field, described by 
the periodic exchange of the photons between the resonator 
and the driving field, can be written as following: 

 ( )†
w = e e .d di t i tH a a− ω ω

μ ξ +  (7) 

3. Energy levels and the spectroscopy of dressed states 

Let us first diagonalize the qubit Hamiltonian, i.e., con-
sider it in the eigenstate representation (see, e.g., Ref. 36). 
Then the qubit-resonator Hamiltonian can be written 
(without drive) 

 qb 0 int= ,rH H H−′ ′ ′+  (8) 

 qb †
0

1= ,
2 2z rH a a
ω ⎛ ⎞′ σ + ω +⎜ ⎟

⎝ ⎠
 (9) 

 †
int

qb qb
= ( ) ,z xH g a a

⎛ ⎞ε Δ′ − + σ − σ⎜ ⎟⎜ ⎟ω ω⎝ ⎠
 (10) 

where 

 2 2
qb =ω Δ + ε  (11) 

is the bare qubit energy difference, ,x zσ  are Pauli matrices 
in the energy basis { , }g e  (so that =z g gσ − ). The 
bare system eigenstates are / , = /e g n e g n⊗  and 
eigenvalues 

 qb
/ ,

1= .
2 2e g n rE n
ω ⎛ ⎞± + ω +⎜ ⎟

⎝ ⎠
 (12) Fig. 1. (Color online) (a) Scheme of the qubit (denoted by blue

box) coupled to the transmission line resonator. (b) Equivalent
circuit for the description of the infinitesimal piece of length xΔ  of
the transmission line. (c) Flux qubit with 3 Josephson junctions. 
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If the frequency rω  is close to the gap frequency of the 
qubit qbω  (for definitiveness we assume here qb>rω ω ) 
then for each n  there are pairs of levels | ,e n〉  and 
| , 1g n+ 〉  which are close by the energy. Therefore, in or-
der to find the modification of these levels by the interac-
tion (10), we account only for the transitions between these 
two levels:  

int int, 1 , = , , 1 = g 1,g n H e n e n H g n nε′ ′+ + +  (13) 

 
qb

= .g gε
Δ
ω

 (14) 

(Note that away from the degeneracy point ( = 0)ε  the 
coupling strength is reduced by qb/Δ ω  [21].) This leads 
to the new eigenvectors of the Hamiltonian qb rH −′  which 
can be expressed in terms of the eigenvectors of bare Ha-
miltonian 0H ′  as following: 

 
, , 1sin cos

= .
, ,cos sin
n g n
n e n

⎛ − ⎞ ⎛ + ⎞η η⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟+ − η η⎝ ⎠⎝ ⎠ ⎝ ⎠

 (15) 

Then the solution of the eigenvalue problem is given by 
the following: 

 2 1
tan 2 = ,

g nε +
η

δ
 (16) 

 ( ), = 1 ,
2

n
n rE n±

Ω
ω + ±  (17) 

 ( )2 2= 4 1 ,n g nεΩ + + δ  (18) 

 qb= < 0.rδ ω − ω  (19) 

The energy of the ground state, , 0g , is given by 

 gr ,0 = .
2gE E δ

≡ −  (20) 

Here nΩ  defines the difference of energy levels: 
, , =n n nE E+ −− Ω . In particular, the energy anticrossing 

takes place at = 0δ , that is at *qb ( ) = rω ε ω , and it is 
given by 

*
min *= ( ) = 2 1 = 2 1.n n

r
g n g n
ε

Δ
Ω Ω ε + +

ω
 (21) 

For example, in the inset in Fig. 2,a the energy anticrossing 
is shown for = 0n . 

If the cavity is coupled to a weak drive field, one can 
achieve a regime when only few lower Fock states of the 
resonator are relevant (plotted with Eqs. (17) and (20) in 
Fig. 2,a). This allows the spectroscopy of the «dressed» 
energy levels: the transmission is resonantly increased 
when the drive photon energy dω  matches the system 
energy difference from Eqs. (17) and (20) — shown with 
double arrows in Fig. 2,a for two possible frequencies. One 
can plot then the respective energy contour lines to de-

scribe experimental results — see Figs. 2,b,c, which relate 
to the experimental Figs. 2 and 3 from Ref. 31. If the driv-
ing amplitude is increased, one should expect both multi-
photon transitions as well as the involving qubit's upper 
levels, see Refs. 30, 37. 

4. Hamiltonian of the system 

4.1. Jaynes–Cummings Hamiltonian 

Let us rewrite the interaction Hamiltonian, Eq. (10), by 
introducing the qubit lowering and raising operators  

 †1 1= ( ) and = ( ),
2 2x y x yi iσ σ − σ σ σ + σ  (22) 

so that † =g eσ , † = 0eσ , etc.; then we have 

 † † † †
int = ( ) ( )H g a a g a aε ε′ σ + σ + σ + σ −   

 †

qb
( ) .zg a aε

− + σ
ω

 (23) 

Fig. 2. (Color online) (a) Energy levels versus energy bias ε . 
Avoided level crossing is shown as a close-up in the inset. Para-
meters for this and the subsequent figures: / = 1.8hΔ  GHz, 

/2 = 3g π  MHz, /2 = 2.5rω π  GHz. (b) Contour lines of the 
energy difference versus bias ε  and the driving frequency dω . 
Green (lower) line is for ,0 gr=d E E−ω −  and the black (upper) 
line is for ,0 gr=d E E+ω − . (c) Same as in (b) — in the very 
narrow vicinity of the resonator fundamental frequency .rω  
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The second and the third term in Eq. (23) can be neglected 
in the RWA since they do not conserve the number of pho-
tons in the system (this will also be justified in the next 
paragraph). The first term together with 0H ′  from Eq. (9) 
make the Jaynes–Cummings Hamiltonian: 

qb † † †1= ( ).
2 2JC z rH a a g a aε
ω ⎛ ⎞σ + ω + + σ+ σ⎜ ⎟

⎝ ⎠
 (24) 

4.2. Interaction representation 

Consider the Hamiltonian of interaction intH ′  in the in-
teraction representation. For this we note the following 
relations (see, e.g., [38]): 

 
† †

e e = e ,ia a t ia a t i ta aω − ω − ω  (25) 

 2 2e e = e .
i t i t i tz z
ω ωσ − σ − ωσ σ  (26) 

Then we obtain 

 
0 0 ( )† qb

int int= e e = e h.c.
i iH t H t i tI rH H g a

′ ′− ω −ω
ε
⎛ ⎞′ σ + +⎜ ⎟
⎝ ⎠

 

 ( )( )qb

qb
e h.c. e h.c. .

i t i tr rg a g a
− ω +ω − ω

ε
ε⎛ ⎞+ σ + − +⎜ ⎟ ω⎝ ⎠

  

  (27) 

In the RWA, when qb qbrω − ω ω , the first term is slow-
ly rotating, while the second and third terms are fast rotat-
ing ones. This justifies neglecting these terms in the RWA. 

4.3. Rotating-wave approximation 

Consider the Hamiltonian of the driven system in the 
RWA: 

 ( ) † †
qb w= .RWA rH U H H U i UU− μ′ + +  (28) 

For this we choose the transformation 

 ( )†= exp / 2d zU i t a a⎡ ⎤ω + σ⎢ ⎥⎣ ⎦
 (29) 

and obtain 

 qb † † †= ( )
2RWA z rH a a g a aε

δω
σ + δω + σ + σ +   

 †( ),a a+ξ +  (30) 

 qb qb= ,dδω ω − ω  (31) 

 = .r r dδω ω −ω   

4.4. With separate control microwave line 

For the sake of generality, consider also the case when 
qubit is driven by the separate control line. Then instead of 
Eq. (7) we have 

 (2)
w ac= cos ,p d zH I tμ − Φ ω ⋅τ  (32) 

where acΦ  is the amplitude of the driving flux. This ex-
pression in the qubit eigenstate representation gives the 
following: 

 (2)
w ac

qb qb

e e=
2

i t i td d'
p z xH I

ω − ω

μ
⎛ ⎞+ ε Δ

− Φ σ − σ ≈⎜ ⎟⎜ ⎟ω ω⎝ ⎠
 

 †(e e ),i t i td dω − ω
ε≈ ξ σ + σ  (33) 

 ac
qb

1= .
2 pIε

Δ
ξ Φ

ω
 (34) 

Here we have left only slowly rotating terms (see discus-
sion above). Note that the amplitude εξ  is dependent on 
the bias ε  (see Eq. (11)). Then in the RWA after the trans-
formation (29) we obtain the expression which differs from 
Eq. (30) by substituting the last term, †( )a aξ + , with 

†( ).εξ σ +σ  

4.5. Dispersive regime 

In the dispersive regime (that is far from resonance, 
where = 0δ ) the diagonalization of the Hamiltonian (24) 
in the second order in /g δ  [38] gives 

2 2
†

qb
1= .
2 z r z

g g
H a aε ε⎛ ⎞ ⎛ ⎞

− ω + σ + ω + σ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟δ δ⎝ ⎠ ⎝ ⎠
 (35) 

This expression explicitly shows, first, how the qubit tran-
sition energy is shifted (normalized) by the coupling and, 
second, how the resonator energy rω  is shifted by the 
qubit in different directions depending on the qubit state. 

5. Solution of the master equation for the density 
matrix of the system 

To describe the qubit-resonator dissipative dynamics we 
have to solve the master equation for the density matrix :ρ  

 [ ]= , [ ].i Hρ − ρ + ρL  (36) 

It includes the dynamic part and dissipative Lindblad term 
[39] 

 ( )
3

† † †

=1

1[ ] = 2 ,
2 k k kk k k

k
C C C C C Cρ ρ − ρ−ρ∑L  (37) 

where 

 1 1 1
1

1= , = ,C
T

γ σ γ  (38) 

 2
2 1

1 1 1= , = = ,
2 2zC

T T T
φ

φ
φ

γ
σ γ −   

 3 = .C a�   

Lindblad operator L  presents dissipation in the resonator 
(photon decay) with the rate ,�  and the qubit decohe-
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rence: the relaxation rate 1γ  and the dephasing rate φγ . 
We consider nondispersive regime (near the qubit-
resonator resonance). Hamiltonian of the system H  in the 
rotating wave approximation has the form of Eq. (30). So-
lution of the master equation determines the observable 
quantities, in particular, the expectation value of the pho-
ton field in the resonator 

 = Tr( ).a aρ  (39) 

The Hilbert space of the composite system QRH  is 
the tensor product of qubit space QH  and photon (resona-
tor) space RH : =QR Q RH H H⊗  with bases vectors 

/ , = /e g n e g n⊗ . Bases vectors g  and e  

 
1 0

= , =
0 1

g e
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (40) 

are the eigenvectors of the operator zσ . Fock vectors of 
the photon field n  (the eigenvectors of photons number 
operator † =a a n n n ) are vectors in infinite-dimen-
sional space =N ∞ : 

1 0 0 0
0 1 0 0

0 = , 1 = , 2 = , ... = .0 0 1
0 0 0 1

n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (41) 

In the basis / ,e g n  the matrix equation (36) is the infi-
nite set of equations for infinite-dimensional matrix ijρ . 

In the following we consider the case of =N 2, which 
allows the analytical solution, and in the case 1N  we 
study the problem numerically. 

5.1. Weak driving limit 

To find the analytical solution we restrict the photon 
space to =N 2, supposing that mean photon number in 
resonator (created by the driving field with amplitude ξ ) is 
much less than unity. The basis / ,e g n  in this case con-
sists of 4  base vectors :ib  

 1 2 3 4= 0 , = 0 , = 1 , = 1 ,b g b e b g b e  (42) 

and the density matrix =ij i jb bρ ρ  takes the form 

 

0, 0 0, 0 0, 1 0, 1

0, 0 0, 0 0, 1 0, 1

1, 0 1, 0 1, 1 1, 1

1, 0 1, 0 1, 1 1, 1

= .

g g g e g g g e

e g e e e g e e

g g g g g g g e

e g e e e g e e

ρ ρ ρ ρ⎛ ⎞
⎜ ⎟
ρ ρ ρ ρ⎜ ⎟

ρ ⎜ ⎟ρ ρ ρ ρ⎜ ⎟
⎜ ⎟ρ ρ ρ ρ⎝ ⎠

 (43) 

In the steady state from Eq. (36) we have 16  linear eq-
uations for matrix elements ijρ . In the weak driving limit, 
leaving the terms up to the first order in the amplitude ξ , 
we obtain the density matrix ρ . Nonzero elements of ma-
trix ijρ  in the weak driving limit are 

 0, 0 = 1,g gρ   

 qb
1, 0 0, 1 2

qb

( )
= = ,

( / 2)( )
g g g g

r

i

g i i
∗

ε

ξ δω − γ
ρ ρ

− δω − δω − γ�
 (44) 

 0, 0 0, 0 2
qb

= = ,
( / 2)( )

e g g e
r

g
g i i

ε∗

ε

ξ
ρ ρ

− δω − δω − γ�
  

where 1= ( / 2) φγ γ + γ . 
Putting (43) in (39) we obtain for the average value of 

the photon field in the resonator in the weak driving (WD) 
limit 

 qb
2

r qb

( )
= .

( / 2)( )WD
i

a
g i iε

ξ δω − γ

− δω − δω − γ�
 (45) 

The transmission amplitude of the output driving signal t  
is defined by the photon field in the resonator, Eq. (100) 
(see Appendix), and in accordance with (45) we obtain 

 qb
2

qb
Im .

2 ( / 2)( )WD
r

i
t

g i iε

δω − γ
=

− δω − δω − γ

�

�
 (46) 

We have normalized t  on the value when the qubit is de-
coupled from the resonator, = 0g , and =d rω ω . 

The plot of the transmission amplitude ,WDt  given by 
Eq. (46), is shown in Fig. 3 for qb = rω ω  and different 
values of the decaying rates �  and γ  (given in units of 
the coupling constant gε ). For small decaying rates �  and 
γ  the transmission spectrum displays the Rabi-splitting 
peaks (solid curve), which are smeared with increasing of 
the decaying. 

In Fig. 4 the density plot of the transmission amplitude 
as a function of the bias ε  and the detuning d rω −ω  is 

Fig. 3. (Color online) Normalized transmission amplitude t  as a 
function of the driving frequency detuning d rω −ω  at = ∗ε ε
(when qb( ) = r∗ω ε ω ) for different values of the decaying rates 
�  and γ  (given in the figure in units of gε ), calculated with 
Eq. (46). 
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shown. The parameters here and below are taken for the 
comparison with the relevant experimental work [31]: 

/ = 1.8hΔ  GHz, / 2 = 3g π  MHz, / 2 = 2.5rω π  GHz (the 
same as in Fig. 2) and also the loss rate of the resonator 

4/ 2 = 1.25 10−π ⋅�  GHz and the loss rate of the qubit 
= gγ . Note that we consider the intermediate coupling re-

gime, when =g γ � . The transmission amplitude is 
resonantly increased along the lines shown in Fig. 2,c as 
expected. The small vicinity of the resonator characteristic 
frequency, ( , )d r rg gω ∈ ω − ω + , allows to demonstrate 
the avoided crossing at = ∗ε ε , as it was reported in Ref. 31. 

For more detailed comparison and determining the not 
well known parameters (e.g., decay rate γ ) it is needed to 
compare experimental and theoretical sets of cros-sections 
of surface t  versus ε  and dω . In such way it is shown in 
Fig. 5 for =d rω ω . 

6. Numeral solution of the master equation for the 
density matrix. Beyond the weak driving regime 

In the case of not small driving amplitudes, i.e., when the 
mean photon number † 1a a , we have solved the equa-
tion for the density matrix ρ  numerically. Results are pre-
sented in Fig. 6. The transmission amplitude t  in all cases 
is normalized on the maximal value; as above qb = rω ω . In 
Fig. 6,a the transmission amplitude is shown for the case of 
small damping: / = 0.1gε�  and / = 0.1gεγ . At small 
value of the driving amplitude ξ  the solid curve in Fig. 6,a 
coincides with the dependence ( )dWDt ω  (Fig. 3). With 
increasing of ξ  each splitted Rabi peak is supersplitted 
(dashed curve) (see also in Ref. 40). With further increasing 
of the amplitude ξ , this supersplitting is smeared (dotted-
dashed curve). Thus in the nonlinear regime we observe 
the qualitatively new features as compared to the weak 
driving limit. 

When the decaying is rather large, such that in the 
weak-driving case, we do not have the Rabi splitting (dot-
ted-dashed curve in Fig. 3), in the nonlinear response we 
do not have the qualitatively new features. It is shown in 
Fig. 6,b ( / = 1gε�  and / = 2gεγ ). 

Fig. 4. (Color online) Normalized transmission amplitude t  as a
function of the bias ε  and the driving frequency detuning

,d rω −ω  calculated with Eq. (46). 
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Fig. 5. (Color online) Normalized transmission amplitude t  as a
function of the bias ε  for =d rω ω  calculated with Eq. (46) and
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We also calculated the average number of photons in 
the resonator, †=n a a . For the parameters in Fig. 6 it 
depends on the frequency; the maximal values are the fol-
lowing: max = 0.005n  for / = 0.01gεξ , max = 0.3n  for 

/ = 0.15gεξ , max = 1.8n  for / = 0.3gεξ . 

7. Conclusions 

We presented the detailed theory for the system of the 
flux qubit coupled inductively to the transmission line re-
sonator. The transmission coefficient was calculated with 
the system's density matrix by solving the master equation 
within RWA. 

The avoided crossing of the dressed energy levels was 
shown in the resonant case, where qbd rω ≈ ω ≈ ω . This 
was demonstrated in the intermediate coupling regime, 
which describe the experimental results of Oelsner et al. 
[31]. We have shown that the dissipation smears the Rabi 
splitting. Moreover, we have demonstrated the supersplit-
ting in the strong driving regime. 
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Appendix: Transmission line resonator 

In this Appendix we consider the resonator formed by the 
transmission line interrupted by two capacitances 0C . The 
qubit we assume to be coupled inductively to the resonator 
at its center, see Fig. 1,a. We start by presenting the equa-
tions which describe the superconducting transmission line. 

The transmission line 

The transmission line can be modelled as an infinite al-
teration of the elementary circuits (e.g., [41]), as shown in 
Fig. 1,b. Here elementary inductance, capacitance and 
conductance are given by the values per unit length: 

=L L xΔ Δ , =C C xΔ Δ , =G G xΔ Δ . 
Looking at the circuit in Fig. 1,b, we can write (neglect-

ing the Ohmic losses) the following equations, by applying 
the Kirchhoff’s laws for the voltage ( , )V x t  and the current 

( , );I x t in the limit 0xΔ →  they take the form 

 ( , ) ( , )= ,V x t I x tL
x t

∂ ∂
−

∂ ∂
 (47) 

 ( , ) ( , )= ( , ) .I x t V x tGV x t C
x t

∂ ∂
− −

∂ ∂
 (48) 

These equations can be rewritten for either ( , )I x t  or 
( , )V x t  as following: 

 
2 2

2 2 2 2
1 = , = { , },A A A A I V

tx v t v
∂ ∂ ∂

−
∂∂ ∂

�
 (49) 

 = 1 / ,v LC  (50) 

 = / .G C�  (51) 

Here v  has the meaning of the phase velocity and �  de-
fines the loss in the transmission line. 

Assuming ( , ) = ( )ei tI x t I x ω  and ( , ) = ( )ei tV x t V x ω , we 
obtain 

 ( ) = ( ),dV x i LI x
dx

− ω  (52) 

 ( ) = ( ) ( ).dI x G i C V x
dx

− + ω  (53) 

Then equation for ( ) = { ( ), ( )}A x I x V x  can be written as 
following: 

 
2

2
2
( ) ( ) = 0,d A x A x

dx
− γ  (54) 

 = ( ) .i L G i C ikγ ω + ω ≡ α +  (55) 

Solving equation for ( )V x  and making use of Eq. (52), we 
obtain 

 0 0( ) = e e ,x xV x V V+ −γ − γ+  (56) 

 0 0

0 0
( ) = e e ,x xV V

I x
Z Z

+ −
−γ γ−  (57) 

where  

 0 1 2= .i LZ Z iZω
≡ +

γ
 (58) 

 1 22 2 2 2= , = .Lk LZ Z
k k

ω ω α

α + α +
 (59) 

When losses in the line are small ( ),G Cω  we obtain 

 = , = ,
2 2
G Lk LC

v C v
ω

≈ ω α ≈
�

 (60) 

 1 2 2= , = .L LZ Z
C k

ω α
 (61) 

Here the constants 0V +  and 0V −  stand for the amplitudes of 
the right- and left-moving waves and 0Z  is the transmis-
sion line characteristic (wave) impedance. 
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Open transmission-line resonator 

Consider the open transmission line of the length l . 
The quality factor of the resonator can be written as fol-
lowing [41]: 

 = = = .
2

r rCkQ
G
ω ω

α �
 (62) 

This relation can be seen as another definition of :�  
= / .r Qω�  Now let us define normal modes of the reso-

nator without dissipation ( = 0� ). Then assuming zero 
current through the boundaries at = / 2x l±  we obtain 

 0

0
( ) = e ( 1) e ,j jik x ik xj

j
V

I x
Z

+ −⎛ ⎞− −⎜ ⎟
⎝ ⎠

 (63) 

 0( ) = e ( 1) e ,j jik x ik xj
jV x V

−+ ⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 (64) 

where = ,jk l jπ  = 1, 2,3,...j  In particular, for the funda-
mental mode = 1j  of the resonator we obtain  

 0
1 1

0

2
( ) = cos ,

V
I x k x

Z

+
 (65) 

 1 0 1( ) = 2 sin .V x iV k x+−  (66) 

For the fundamental mode = 1j  of the / 2λ  resonator 
( = / 2)l λ  we have 1 = /rk k l≡ π , 1 1= =r k vω ≡ ω

= 2 / (2 ),r rL Cπ  where =rL Ll  and =rC Cl  are the 
total inductance and capacitance of the resonator. 

Let us expand the current in the resonator with the nor-
mal modes. We will choose the factor in the expansion 
having in view analogy with the harmonic oscillators (see 
below): 

 
2

( , ) = ( ) cos .j
j j j

r

m
I x t q t k x

L
ω∑  (67) 

Then for the voltage we obtain 

0

2( , )( , ) = = ( )sin .
x

j
j j

r

mI x tV x t L dx q t k x
t C
′∂′− −

∂ ∑∫  (68) 

Next, the Hamiltonian is introduced as the total energy of 
the resonator: 

( )
/2 2 2

2 2 2

/2

1= = ,
2 2 2

l

r j j j j j
l

CV LIH dx m q m q
−

⎛ ⎞
+ + ω⎜ ⎟⎜ ⎟

⎝ ⎠
∑∫  (69) 

which formally coincides with the Hamiltonian of the sys-
tem of harmonic oscillators. This allows to quantize the 
system with the generalized coordinates jq  and conjugate 
momenta =j j jp m q . It is convenient also to introduce the 
annihilation/creation operators: 

 †( ) = , ( ) = .
2 2

j j j j j j j j
j j

j j j j

m q ip m q ip
a t a t

m m

ω + ω −

ω ω
 (70) 

In these terms, the current and voltage operators and the 
Hamiltonian take the following form: 

 †= ( ) cos ,j
j jj

r
I a a k x

L
ω

+∑  (71) 

 †= ( ) sin ,j
j jj

r
V i a a k x

C
ω

−∑  (72) 

 † 1= .
2

r j jjH a a⎛ ⎞ω +⎜ ⎟
⎝ ⎠

∑  (73) 

We consider the frequency close to the fundamental 
mode frequency ,rω  so in what follows we disregard oth-
er modes. For the fundamental mode, with 1 = /k lπ  and 
omitting the index = 1j , we obtain 

 †
0 0= ( )cos , = ,r

r r
r

xI I a a I
l L

ωπ
+  (74) 

 †
0 0= ( )sin , = ,r

r r
r

xV iV a a V
l C

ωπ
−  (75) 

where 0rI  and 0rV  stand for the zero-point root mean 
square (rms) current and voltage, and the Hamiltonian is 
given by Eq. (4). In particular, it follows that at the boun-
daries, = / 2x l± , there is no current, and voltage equals to 

,W±  where 

 †
0 0= = 2 Im .r rW iV a a V a− −  (76) 

Transmittance of the resonator 

Consider now the situation where the input signal is in-
jected in the transmission-line resonator at = / 2x l−  
through the capacitance 0C  and the output signal is de-
tected after another capacitance 0C  at = / 2.x l  We will 
obtain the system of equations for iV +  and ,iV −  which 
define the classical current and voltage in ith region, 

= 1, 2, 3i , respectively, for < / 2,x l−  ( / 2, / 2),x l l∈ −  
and > / 2:x l  

 ( ) = e e ,x x
i i iV x V V+ −γ − γ+  (77) 

 
0 0

( ) = e e .x xi i
i

V V
I x

Z Z

+ −
−γ γ−  (78) 

We assume the matched termination (with impedance 
equal to 0Z ), then there is no left-moving wave in the third 
region, 3 = 0V − . The boundary conditions for currents and 
voltages at the points = / 2x l±  are the following:  

 1 2( / 2) = ( / 2),I l I l− −  (79) 

 2 3( / 2) = ( / 2),I l I l  (80) 
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 2 1 2 0( / 2) = ( / 2) ( / 2) / ,V l V l I l i C− − + − ω  (81) 

 3 2 3 0( / 2) = ( / 2) ( / 2) / .V l V l I l i C+ ω  (82) 

For the output signal we obtain 3 1= ,V V t+ +  3 =I +

3 0 1 0= / = / ,V Z V t Z+ +  

 
2

2 2
4= ,

4 4 1 e lt
i − γ
θ

θ + θ− +
 (83) 

where 0 0= .C Zθ ω  
The phase shift of the output signal relative to the phase 

of the input signal is klϕ− , where ϕ  is the phase of the 
quantity t, Eq. (83): 

 
Imtan = .
Re

t
t

ϕ  (84) 

The transmittance of the resonator is the ratio of the output 
power at the point = / 2x l+  to the input power at the 
point = – / 2:x l  

 out out out out out

in in in in in

( / 2) ( / 2) ( / 2) ( / 2)
= = ,

( / 2) ( / 2) ( / 2) ( / 2)

P V l I l V l I l
T

P V l I l V l I l

∗ ∗

∗ ∗
+

− − + − −
  

  (85) 

where in 1( ) = e ,xV x V + −γ  in 1 0( ) = e / ,xI x I Z+ −γ  out ( ) =V x
3= e ,xV + −γ  out 3 0( ) = e / .xI x I Z+ −γ  
Hence, for the transmittance we obtain  

 2 2= | | e .lT t − α  (86) 

It is important to note that the losses enter the quantity t  
due to θ : 

 0= ( )
C

k i
C

θ + α .  

If the losses are small ( 2<< kα ) we can write the 
transmittance near the first resonance ( = /r v lω π ) in the 
Lorenzian form: 

 
4 2 2

2 21
12 2

16
= (4 2 )

(2 ) (2 )
r rT l
⎧θ ω ω⎪ θ + α +⎨

π π⎪⎩

  

 

12

1(4 2 ) ,
2

r l

−
⎫⎡ ⎤ω ⎪+ θ + α − δω⎢ ⎥ ⎬

π⎢ ⎥ ⎪⎣ ⎦ ⎭

 (87) 

where 1 0 1= ,rC Zθ ω  = .rδω ω−ω  
From Eq. (87) we see that the main resonance is shifted 

both due to losses α  and capacitance 0.C  The width of 
Lorenzian (87) is given by 

 2
1= (4 2 )r l

ω
Δω θ + α

π
 (88) 

with the quality factor 

 
2
1

= =
4 2

rQ
l

ω π
Δω θ + α

 (89) 

and transmittance at resonance 

 
2

1

1= .
(1 / 2 )

rT
l+ α θ

 (90) 

The first term in (88) defines the photon decay rate �  due 
to leakage through the capacitances 0:C  

 
2 22

0 11 44
= = .rr C Z

Cl
ωω θ

π
�  (91) 

This rate is consistent with its definition given in Ref. 31. 
Below we estimate the photon decay rate �  for copla-

nar waveguide resonator with its parameter taken from [42]: 
=l  23 mm, / 2 =rω π  2.5 GHz, 0 =C 1 fF, 1 =Z  50 Ohm. 

From these values we obtain 4
1 = 7.8 10 .−θ ⋅  The capacit-

ance per unit length C  is calculated from the expression 
for 1θ  at resonance: 1 0= / .C lCθ π  For C  we thus obtain 

10= 1.74 10C −⋅  F/m. Finally, for photon decay rate �  we 
obtain from (91): / 2 = 1.95π�  kHz. This value is about 
two times less than the corresponding experimental values 
obtained in [42]. We assume this discrepancy is due to di-
electric losses associated with the quantity .G  This allows us 
to estimate α  from 2

14 2 :lθ ≈ α  55.3 10−α ≈ ⋅  m–1. There-
fore, for G  we obtain 1= 2 / 2.12G Zα ≈  Ohm–1⋅m–1. 

Transmittance in the dispersive regime 

In the dispersive regime coupling to the qubit can be 
described as an additional inductance qL  at the position 

= 0.x  Such a problem is described by adding two more 
equations for = 0x  to the system of equations (79)–(82) 
which follows from Eq. (47) by adding to the r.h.s. the 
following term: 

 
( , )( ) = ( ) ,q

q
I I x tx M x L
t t

∂ ∂
−δ −δ

∂ ∂
 (92) 

where 

 2= .q
q

I
L M

∂

∂Φ
 (93) 

In the ground state we have [43,44] 

 
2 2 2

2 2 3/2

4
= .

( )
p

q
M I

L
Δ

Δ + ε
 (94) 

The solution of the system of equations for the transmis-
sion coefficient can be written as following: 

( )( ) ( )
1

222
2 2

0 0

1= e 1 2 e 1 2 .
4 8

ql lL
t i i i

C Z

−
− γ −γ⎡ ⎤

− − θ + − + θ⎢ ⎥
θ θ⎢ ⎥⎣ ⎦

  (95) 
Here the first term describes the transmission without qu-
bit, at = 0qL ; see Eq. (83). It describes the resonant 
transmission (with = 1t ) at 

 2= .r

r

ω−ω θ
ω π

 (96) 
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At this frequency we find the expression for the transmis-
sion phase (84): 

 
2

0

1tan = ,
2

qr

r

LC
C L

⎛ ⎞
ϕ − ⎜ ⎟π ⎝ ⎠

 (97) 

where we have assumed 0/ 1.r q rC L C L  
In the ground state we obtain 

 ( )
3/22tan = 1 / ,A

−
⎡ ⎤ϕ − + ε Δ⎢ ⎥⎣ ⎦

 (98) 

 
2 2

0

2 g= .r

r

C
A

C
⎛ ⎞
⎜ ⎟π ω Δ⎝ ⎠

 (99) 

Transmittance in the resonant regime 

From the solution of the system of equations (79)–(82) 
we can express the solution for the transmission also in 
terms of the field in the resonator: 3 2= 2 e ;lV i V+ γ −θ  then 
after the quantization of the field in the resonator (see 
Eq. (76)) we arrive at the expression for 3 1= / :t V V+ +  

 
1

Im
= 2 = ,

2
aWt

V +
θ −

ξ
�  (100) 

which relates the transmission coefficient t  with the pho-
ton field a . Here we have taken into account that in 
Eq. (7): 0 r0 1= / 2.C V V +ξ  
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