2,153 research outputs found

    Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya)

    Get PDF
    The origin of carbon substrates used by in situ sedimentary bacterial communities was investigated in an intertidal mangrove ecosystem and in adjacent seagrass beds in Gazi bay (Kenya) by d13C analysis of bacteria-specific PLFA (phospholipid fatty acids) and bulk organic carbon. Export of mangrove-derived organic matter to the adjacent seagrass-covered bay was evident from sedimentary total organic carbon (TOC) and d13CTOC data. PLFA d13C data indicate that the substrate used by bacterial communities varied strongly and that exported mangrove carbon was a significant source for bacteria in the adjacent seagrass beds. Within the intertidal mangrove forest, bacterial PLFA at the surface layer (0-1cm) typically showed more enriched d13C values than deeper (up to 10cm) sediment layers, suggesting a contribution from microphytobenthos and/or inwelled seagrass material. Under the simplifying assumption that seagrasses and mangroves are the dominant potential end-members, the estimated contribution of mangrove-derived carbon to benthic mineralization in the seagrass beds (16-74%) corresponds fairly well to the estimated contribution of mangrove C to the sedimentary organic matter pool (21-71%) across different seagrass sites. Based on the results of this study and a compilation of literature data, we suggest that trapping of allochtonous C is a common feature in seagrass beds and often represents a significant source of C for sediment bacteria - both in cases where seagrass C dominates the sediment TOC pool and in cases where external inputs are significant. Hence, it is likely that data on community respiration rates systematically overestimate the role of in situ mineralization as a fate of seagrass production

    Differences in time until dispersal between cryptic species of a marine nematode species complex

    Get PDF
    Co-occurrence of closely related species may be achieved in environments with fluctuating dynamics, where competitively inferior species can avoid competition through dispersal. Here we present an experiment in which we compared active dispersal abilities (time until first dispersal, number and gender of dispersive adults, and nematode densities at time of dispersal) in Litoditis marina, a common bacterivorous nematode species complex comprising four often co-occurring cryptic species, Pm I, II, III, and IV, as a function of salinity and food distribution. The experiment was conducted in microcosms consisting of an inoculation plate, connection tube, and dispersal plate. Results show species-specific dispersal abilities with Pm I dispersing almost one week later than Pm III. The number of dispersive adults at time of first dispersal was species-specific, with one dispersive female in Pm I and Pm III and a higher, gender-balanced, number in Pm II and Pm IV. Food distribution affected dispersal: in absence of food in the inoculation plate, all species dispersed after ca four days. When food was available Pm I dispersed later, and at the same time and densities irrespective of food conditions in the dispersal plate (food vs no food), suggesting density-dependent dispersal. Pm III dispersed faster and at a lower population density. Salinity affected dispersal, with slower dispersal at higher salinity. These results suggest that active dispersal in Litoditis marina is common, density-dependent, and with species, gender- and environment-specific dispersal abilities. These differences can lead to differential responses under suboptimal conditions and may help to explain temporary coexistence at local scales

    To stay or go: differential dispersal rates in cryptic species of a marine nematode

    Get PDF
    Behind the morphological similarity of many species, a hidden genetic diversity can be found. This cryptic diversity has been well documented in the marine nematode Rhabditis (Pellioditis) marina, a common bactivore associated with decomposing macro-algae in the littoral zone of coastal and estuarine environments. Four cryptic species of R. marina (Pm I, Pm II, Pm III and Pm IV) co-occur along the south-western coast and estuaries of The Netherlands. This coexistence challenges traditional competition theory, which states that competition will be most severe between closely related species. A previous study showed that competition between the four cryptic species occurred, but interspecific interactions were affected by environmental conditions such as salinity. One of the most important mechanisms to react to competition is dispersal. Most organisms have at least one stage in which dispersal occurs over a specific spatial scale. Meiobenthic species, however, lack any pelagic stage. But, recent research shows more and more evidence that meiofauna is also able to actively disperse with lateral sinusoidal movements in the interstitial spaces as one of the most common modes of dispersal of nematodes over short distances. Dispersal is a process triggered partially by the internal conditions of organisms and partially by environmental conditions. In the current experiment, species-specific differences in active dispersal rates and the effects of salinity and food distribution on dispersal behaviour were tested in four cryptic species of R. marina (Pm I, Pm II, Pm III and Pm IV), The results of the experiment showed that dispersal is a species-specific behaviour with Pm III being the most rapid disperser (first dispersal event occurred after an average of 3 days), and Pm I the slowest disperser (average of 10 days). An effect of food distribution on the dispersal rates of all cryptic species was found with the most rapid dispersal if no food was present at the start situation. Salinity also had an effect with a higher dispersal rate at lower salinity for all the species. Moreover, the number of dispersive organisms differed between the species, with only one female disperser in Pm I and Pm III and a mix of female and male dispersers for Pm II and Pm IV at the first dispersal event. This species-specific dispersal behaviour and the influence of external conditions on dispersal can influence the reaction on competition. In a future experiment the effect of competition on dispersal will be studied by using competition cultures, where all four cryptic species can influence each other, but the organisms have the chance to disperse away. These results are important to better understand the processes behind the coexistence of cryptic species

    Making Gynogenetic Diploid Zebrafish by Early Pressure

    Get PDF
    Heterozygosity in diploid eukaryotes often makes genetic studies cumbersome. Methods that produce viable homozygous diploid offspring directly from heterozygous females allow F1 mutagenized females to be screened directly for deleterious mutations in an accelerated forward genetic screen. Streisinger et al.1,2 described methods for making gynogenetic (homozygous) diploid zebrafish by activating zebrafish eggs with ultraviolet light-inactivated sperm and preventing either the second meiotic or the first zygotic cell division using physical treatments (heat or pressure) that deploymerize microtubules. The "early pressure" (EP) method blocks the meiosis II, which occurs shortly after fertilization. The EP method produces a high percentage of viable embryos that can develop to fertile adults of either sex. The method generates embryos that are homozygous at all loci except those that were separated from their centromere by recombination during meiosis I. Homozygous mutations are detected in EP clutches at between 50% for centromeric loci and less than 1% for telomeric loci. This method is reproduced verbatim from the Zebrafish Book3

    Migrating medical communications software to a multi-tenant cloud environment

    Get PDF
    The rise of cloud computing has paved the way for many new applications. Many of these new cloud applications are also multi-tenant, ensuring multiple end users can make use of the same application instance. While these technologies make it possible to create many new applications, many legacy applications can also benefit from the added flexibility and cost-savings of cloud computing and multi-tenancy. In this paper, we describe the steps required to migrate a. NET-based medical communications application to the Windows Azure public cloud environment, and the steps required to add multi-tenancy to the application. We then discuss the advantages and disadvantages of our migration approach. We found that the migration to the cloud itself requires only a limited amount of changes to the application, but that this also limited the benefits, as individual instances would only be partially used. Adding multi-tenancy requires more changes, but when this is done, it has the potential to greatly reduce the cost of running the application

    Implications of movement for species distribution models - rethinking environmental data tools

    Get PDF
    Movement is considered an essential process in shaping the distributions of species. Nevertheless, most species distribution models (SDMs) still focus solely on environment-species relationships to predict the occurrence of species. Furthermore, the currently used indirect estimates of movement allow to assess habitat accessibility, but do not provide an accurate description of movement. Better proxies of movement are needed to assess the dispersal potential of individual species and to gain a more practical insight in the interconnectivity of communities. Telemetry techniques are rapidly evolving and highly capable to provide explicit descriptions of movement, but their usefulness for SDMs will mainly depend on the ability of these models to deal with hitherto unconsidered ecological processes. More specifically, the integration of movement is likely to affect the environmental data requirements as the connection between environmental and biological data is crucial to provide reliable results. Mobility implies the occupancy of a continuum of space, hence an adequate representation of both geographical and environmental space is paramount to study mobile species distributions. In this context, environmental models, remote sensing techniques and animal-borne environmental sensors are discussed as potential techniques to obtain suitable environmental data. In order to provide an in-depth review of the aforementioned methods, we have chosen to use the modelling of fish distributions as a case study. The high mobility of fish and the often highly variable nature of the aquatic environment generally complicate model development, making it an adequate subject for research. Furthermore, insight into the distribution of fish is of great interest for fish stock assessments and water management worldwide, underlining its practical relevance

    A Seamless Convergence of the Digital and Physical Factory Aiming in Personalized Product Emergence Process (PPEP) for Smart Products within ESB Logistics Learning Factory at Reutlingen University

    Get PDF
    AbstractA seamless convergence of the digital and physical factory aiming in personalized Product Emergence Process (PPEP) for smart products within ESB Logistics Learning Factory at Reutlingen University.A completely new business model with reference to Industrie4.0 and facilitated by 3D Experience Software in today's networked society in which customers expect immediate responses, delightful experience and simple solutions is one of the mission scenarios in the ESB Logistics Learning Factory at ESB Business School (Reutlingen University).The business experience platform provides software solutions for every organization in the company respectively in the factory. An interface with dashboards, project management apps, 3D - design and construction apps with high end visualization, manufacturing and simulation apps as well as intelligence and social network apps in a collaborative interactive environment help the user to learn the creation of a value end to end process for a personalized virtual and later real produced product.Instead of traditional ways of working and a conventional operating factory real workers and robots work semi-intuitive together. Centerpiece in the self-planned interim factory is the smart personalized product, uniquely identifiable and locatable at all times during the production process – a scooter with an individual colored mobile phone – holder for any smart phone produced with a 3D printer in lot size one. Smart products have in the future solutions incorporated internet based services – designed and manufactured - at the costs of mass products. Additionally the scooter is equipped with a retrievable declarative product memory. Monitoring and control is handled by sensor tags and a raspberry positioned on the product. The engineering design and implementation of a changeable production system is guided by a self-execution system that independently find amongst others esplanade workplaces.The imparted competences to students and professionals are project management method SCRUM, customization of workflows by Industrie4.0 principles, the enhancements of products with new personalized intelligent parts, electrical and electronic self-programmed components and the control of access of the product memory information, to plan in a digital engineering environment and set up of the physical factory to produce customer orders. The gained action-orientated experience refers to the chances and requirements for holistic digital and physical systems

    Colonization patterns of Nematoda on decomposing algae in the estuarine environment: community assembly and genetic structure of the dominant species <i>Pellioditis marina</i>

    Get PDF
    We performed a field experiment in the Westerschelde Estuary (The Netherlands) to characterize the colonization dynamics of nematodes in relation to the proximity of a source population and to local environmental conditions. The effects of colonization on the population genetic structure of the dominant species, Pellioditis marina, were simultaneously investigated. Two contrasting sites, each containing four patches with defaunated algae, were sampled seven times during 1 month. Site A was situated amidst Fucus stands, which permanently harbor P. marina, while site B was approximately 100 m from any source population and experienced more stressful environmental conditions. We hypothesized that (1) colonization in site A would proceed faster than in site B and that (2) founder events and genetic bottlenecks would affect population genetic structure and differentiation at site B more than at site A. We screened 992 individuals for variation in 426 base pairs of the cytochrome oxidase c subunit 1 gene with the single-strand conformation polymorphism method. The algal deposits at site A were indeed more rapidly colonized and reached fivefold higher densities of nematodes than those in site B. Haplotype composition in site A was very similar to that of the source population, while rare haplotypes were abundant and genetic diversity was lower in site B. We conclude that founder effects and genetic bottlenecks structured the populations in site B. The genetic differences between patches in each site further indicate that effective migration in P. marina is low and that priority effects influence the genetic structure of P. marina populations
    • …
    corecore