151 research outputs found

    Cognitive Orthogonal Precoder for Two-tiered Networks Deployment

    Full text link
    In this work, the problem of cross-tier interference in a two-tiered (macro-cell and cognitive small-cells) network, under the complete spectrum sharing paradigm, is studied. A new orthogonal precoder transmit scheme for the small base stations, called multi-user Vandermonde-subspace frequency division multiplexing (MU-VFDM), is proposed. MU-VFDM allows several cognitive small base stations to coexist with legacy macro-cell receivers, by nulling the small- to macro-cell cross-tier interference, without any cooperation between the two tiers. This cleverly designed cascaded precoder structure, not only cancels the cross-tier interference, but avoids the co-tier interference for the small-cell network. The achievable sum-rate of the small-cell network, satisfying the interference cancelation requirements, is evaluated for perfect and imperfect channel state information at the transmitter. Simulation results for the cascaded MU-VFDM precoder show a comparable performance to that of state-of-the-art dirty paper coding technique, for the case of a dense cellular layout. Finally, a comparison between MU-VFDM and a standard complete spectrum separation strategy is proposed. Promising gains in terms of achievable sum-rate are shown for the two-tiered network w.r.t. the traditional bandwidth management approach.Comment: 11 pages, 9 figures, accepted and to appear in IEEE Journal on Selected Areas in Communications: Cognitive Radio Series, 2013. Copyright transferred to IEE

    Cognitive Interference Alignment for OFDM Two-tiered Networks

    Full text link
    In this contribution, we introduce an interference alignment scheme that allows the coexistence of an orthogonal frequency division multiplexing (OFDM) macro-cell and a cognitive small-cell, deployed in a two-tiered structure and transmitting over the same bandwidth. We derive the optimal linear strategy for the single antenna secondary base station, maximizing the spectral efficiency of the opportunistic link, accounting for both signal sub-space structure and power loading strategy. Our analytical and numerical findings prove that the precoder structure proposed is optimal for the considered scenario in the face of Rayleigh and exponential decaying channels.Comment: 5 pages, 4 figures. Accepted and presented at the IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2012. Authors' final version. Copyright transferred to IEE

    Impact of Mobility on MIMO Green Wireless Systems

    Full text link
    This paper studies the impact of mobility on the power consumption of wireless networks. With increasing mobility, we show that the network should dedicate a non negligible fraction of the useful rate to estimate the different degrees of freedom. In order to keep the rate constant, we quantify the increase of power required for several cases of interest. In the case of a point to point MIMO link, we calculate the minimum transmit power required for a target rate and outage probability as a function of the coherence time and the number of antennas. Interestingly, the results show that there is an optimal number of antennas to be used for a given coherence time and power consumption. This provides a lower bound limit on the minimum power required for maintaining a green network.Comment: Accepted for EUSIPCO conference. 5 page

    Cross-Layer Design for Green Power Control

    Full text link
    In this work, we propose a new energy efficiency metric which allows one to optimize the performance of a wireless system through a novel power control mechanism. The proposed metric possesses two important features. First, it considers the whole power of the terminal and not just the radiated power. Second, it can account for the limited buffer memory of transmitters which store arriving packets as a queue and transmit them with a success rate that is determined by the transmit power and channel conditions. Remarkably, this metric is shown to have attractive properties such as quasi-concavity with respect to the transmit power and a unique maximum, allowing to derive an optimal power control scheme. Based on analytical and numerical results, the influence of the packet arrival rate, the size of the queue, and the constraints in terms of quality of service are studied. Simulations show that the proposed cross-layer approach of power control may lead to significant gains in terms of transmit power compared to a physical layer approach of green communications.Comment: Presented in ICC 201

    Orthogonal LTE two-tier Cellular Networks

    No full text
    International audienceIn previous works, Vandermonde-subspace fre- quency division multiplexing (VFDM) has been shown to promote overlay networks by enabling a secondary transmitter to cancel its interference to a primary receiver, while simultaneously transmitting useful information to its own receiver at non- negligible rates. Interference cancelation is achieved by exploiting the null-space of the channel from the secondary transmitter to the primary receiver. In the wake of a global deployment of the third generation partnership project's (3GPP) long term evolution (LTE), one of the open questions of VFDM concerns its applicability in a primary LTE-orthogonal frequency division multiple access (OFDMA) multi-user setting. In this work, we address this question by extending VFDM to the multi-user scenario where the primary system employs OFDMA, such as LTE. We show that by using at the secondary system a similar precoder structure to the ones previously introduced, we are able to cancel the interference towards multiple primary receivers while still achieving acceptable rates for the secondary system

    The footprint of cometary dust analogues: II. Morphology as a tracer of tensile strength and application to dust collection by the Rosetta spacecraft

    Get PDF
    The structure of cometary dust is a tracer of growth processes in the formation of planetesimals. Instrumentation on board the Rosetta mission to comet 67P/Churyumov- Gerasimenko captured dust particles and analysed them in situ. However, these deposits are a product of a collision within the instrument. We conducted laboratory experiments with cometary dust analogues, simulating the collection process by Rosetta instruments (specifically COSIMA, MIDAS). In Paper I we reported that velocity is a key driver in determining the appearance of deposits. Here in Paper II we use materials with different monomer sizes, and study the effect of tensile strength on the appearance of deposits. We find that mass transfer efficiency increases from \sim1 up to \sim10% with increasing monomer diameter from 0.3 μ\mum to 1.5 μ\mum (i.e. tensile strength decreasing from \sim12 to \sim3 kPa), and velocities increasing from 0.5 to 6 m/s. Also, the relative abundance of small fragments after impact is higher for material with higher tensile strength. The degeneracy between the effects of velocity and material strength may be lifted by performing a closer study of the deposits. This experimental method makes it possible to estimate the mass transfer efficiency in the COSIMA instrument. Extrapolating these results implies that more than half of the dust collected during the Rosetta mission has not been imaged. We analysed two COSIMA targets containing deposits from single collisions. The collision that occurred closest to perihelion passage led to more small fragments on the target.Comment: 13 pages, 11 figures, accepted for publication in MNRA

    SDR4all: a Tool for Making Flexible Radio a Reality

    No full text
    International audienceIn this contribution, we describe the potential of SDR4all (Software Defined Radio for all) to solve the bottlenecks and reduce the innovation cycle related to the design and implementation of flexible radio algorithms. SDR4all is a programmable software tool with radio cards for wireless researchers, students and engineers. It enables to implement in software any wireless scheme between two laptops. Using an flexible orthogonal frequency division multiplexing (OFDM) based implementation example, we describe the tool and show the performance of the transmission on a real wireless channel at 2.4 Ghz ISM band

    The footprint of cometary dust analogs: I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data

    Full text link
    Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-um up to several hundreds of um, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of COSIMA and MIDAS, instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred um) and velocity (up to 6 m/s). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ~ 2 m/s. For velocities below this value, particles either stick and leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities > 2 m/s and sizes > 80 um, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.Comment: 14 pages, 12 figures, accepted for publication in MNRA
    corecore