117 research outputs found

    Potassium ion influx and Na+,K+-ATPase activity are required for the hamster sperm acrosome reaction.

    Get PDF
    The role of a K+ ion influx and Na+,K+-ATPase activity in the hamster sperm acrosome reaction (AR) was examined, using a range of concentrations of K+,K+ ionophores and a Na+,K+-ATPase inhibitor. Washed epididymal hamster sperm, capacitated in vitro in an artificial medium containing 2 mM Ca2+, 147 mM Na+, and 3, 6, 12, 18, or 24 mM K+, began undergoing the AR after 3 h of incubation. Sperm incubated in low K+ (0.9 mM) failed to undergo the AR even after 5 h of incubation. Sperm in 0.9 mM K+ could be induced to undergo the AR when either K+ (12 mM) alone or K+ (12 mM) with 0.1 microM nigericin was added after 3.5 h of incubation. The addition of K+ alone stimulated the AR in 30 min, whereas nigericin plus K+ stimulated the AR 15 min after addition. Neither nigericin added alone (0.9 mM K+) nor nigericin plus 12 mM K+ added to a low Ca2+ (0.35 mM) system resulted in acrosome reactions. Valinomycin (1 nM) did not stimulate the AR when added together with K+ (3-24 mM) to sperm incubated in 0.9 mM K+ for 3.5 h but markedly decreased sperm motility. Micromolar levels of ouabain blocked the AR when added between t = 0--3 h to sperm incubated with 3-24 mM K+. Inhibition of AR by the addition of 1 microM ouabain to sperm incubated with 3 mM K+ was completely reversed by the addition of 0.1 microM nigericin at t = 3.5 h. These results suggest that Na+,K+-ATPase activity and the resulting K+ influx are important for the mammalian sperm AR. Some similarities between requirements for the hamster sperm AR and secretory granule exocytosis are discussed

    Estradiol inhibits the effects of extracellular ATP in human sperm by a non genomic mechanism of action

    Get PDF
    Steroid hormones, beside their classical genomic mechanism of action, exert rapid, non genomic effects in different cell types. These effects are mediated by still poorly characterized plasma membrane receptors that appear to be distinct from the classic intracellular receptors. In the present study we evaluated the non genomic effects of estradiol (17βE2) in human sperm and its effects on sperm stimulation by extracellular ATP, a potent activator of sperm acrosome reaction. In human sperm 17βE2 induced a rapid increase of intracellular calcium (Ca2+) concentrations dependent on an influx of Ca2+ from the extracellular medium. The monitoring of the plasma membrane potential variations induced by 17βE2 showed that this steroid induces a rapid plasma membrane hyperpolarization that was dependent on the presence of Ca2+ in the extracellular medium since it was absent in Ca2+ free-medium. When sperm were pre-incubated in the presence of the K+ channel inhibitor tetra-ethylammonium, the 17βE2 induced plasma membrane hyperpolarization was blunted suggesting the involvement of K+ channels in the hyperpolarizing effects of 17βE2. Extracellular ATP induced a rapid plasma membrane depolarization followed by acrosome reaction. Sperm pre-incubation with 17βE2 inhibited the effects of extracellular ATP on sperm plasma membrane potential variations and acrosome reaction. The effects of 17βE2 were specific since its inactive steroisomer 17αE2 was inactive. Furthermore the effects of 17βE2 were not inhibited by tamoxifen, an antagonist of the classic 17βE2 intracellular receptor

    Phosphatidylinositol 4,5-bisphosphate hydrolysis in human sperm stimulated with follicular fluid or progesterone is dependent upon Ca2+ influx.

    No full text
    Hydrolysis of the phospholipid phosphatidylinositol 4,5-bisphosphate is thought to be intimately involved in agonist-induced changes in intracellular Ca2+ levels. Recently we have shown that human preovulatory follicular fluid, which induces exocytosis in human sperm, can stimulate a rapid, transient increase in sperm cytosolic [Ca2+] [Thomas & Meizel (1988) Gamete Res. 20, 397-411]. We report here that both a Sephadex G-75 column fraction, derived from follicular fluid, and progesterone (a component of both the G-75 fraction and whole follicular fluid) stimulate rapid hydrolysis of PtdIns(4,5)P2 and PtdIns4P in human sperm. We also report that progesterone stimulates a rapid influx of Ca2+ in human sperm. Human spermatozoa were labelled for 24 h with myo-[3H]inositol and then treated with either the G-75 fraction or progesterone. A 30-65% loss of label was detected in PtdIns(4,5)P2 and PtdIns4P within 15 s of stimulus addition; no changes were observed in PtdIns during 2 min of treatment. The loss of label from both lipids was accompanied by an increase in water-soluble inositol phosphates. Production of both InsP3 and InsP2 was seen within 10 s; however, InsP3 was rapidly removed and had reached control levels by 1 min. Similarly, formation of InsP2 reached a peak by 30 s and then began a decline accompanied by a corresponding increase in InsP. No increases in InsP4 were seen in sperm treated in this fashion. Stimulated hydrolysis of the phosphoinositides and release of inositol phosphates were both blocked by the Ca2+ antagonist La3+. Likewise, the progesterone-induced increase in intracellular Ca2+ was inhibited by La3+, and phosphoinositide hydrolysis stimulated by this hormone was dependent upon the presence of extracellular Ca2+

    PARTIAL CHARACTERIZATION OF A NEW BULL SPERM ARYLAMIDASE

    No full text

    Cytoskeletal Assemblies of Mammalian Spermatozoa

    No full text

    Stimulation of in vitro activation and the acrosome reaction of hamster spermatozoa by catecholamines

    No full text
    corecore