191 research outputs found
Ultraconformable Temporary Tattoo Electrodes for Electrophysiology
Electrically interfacing the skin for monitoring personal health condition is the basis of skin-contact electrophysiology. In the clinical practice the use of stiff and bulky pregelled or dry electrodes, in contrast to the soft body tissues, imposes severe restrictions to user comfort and mobility while limiting clinical applications. Here, in this work dry, unperceivable temporary tattoo electrodes are presented. Customized single or multielectrode arrays are readily fabricated by inkjet printing of conducting polymer onto commercial decal transfer paper, which allows for easy transfer on the user's skin. Conformal adhesion to the skin is provided thanks to their ultralow thickness (<1 ”m). Tattoo electrodeâskin contact impedance is characterized on short- (1 h) and long-term (48 h) and compared with standard pregelled and dry electrodes. The viability in electrophysiology is validated by surface electromyography and electrocardiography recordings on various locations on limbs and face. A novel concept of tattoo as perforable skin-contact electrode, through which hairs can grow, is demonstrated, thus permitting to envision very long-term recordings on areas with high hair density. The proposed materials and patterning strategy make this technology amenable for large-scale production of low-cost sensing devices
Enhanced in vitro magnetic cell targeting of doxorubicin-loaded magnetic liposomes for localized cancer therapy
: The lack of efficient targeting strategies poses significant limitations on the effectiveness of chemotherapeutic treatments. This issue also affects drug-loaded nanocarriers, reducing nanoparticles cancer cell uptake. We report on the fabrication and in vitro characterization of doxorubicin-loaded magnetic liposomes for localized treatment of liver malignancies. Colloidal stability, superparamagnetic behavior and efficient drug loading of our formulation were demonstrated. The application of an external magnetic field guaranteed enhanced nanocarriers cell uptake under cell medium flow in correspondence of a specific area, as we reported through in vitro investigation. A numerical model was used to validate experimental data of magnetic targeting, proving the possibility of accurately describing the targeting strategy and predict liposomes accumulation under different environmental conditions. Finally, in vitro studies on HepG2 cancer cells confirmed the cytotoxicity of drug-loaded magnetic liposomes, with cell viability reduction of about 50% and 80% after 24 h and 72 h of incubation, respectively. Conversely, plain nanocarriers showed no anti-proliferative effects, confirming the formulation safety. Overall, these results demonstrated significant targeting efficiency and anticancer activity of our nanocarriers and superparamagnetic nanoparticles entrapment could envision the theranostic potential of the formulation. The proposed magnetic targeting study could represent a valid tool for pre-clinical investigation regarding the effectiveness of magnetic drug targeting
One-step functionalization of mildly and strongly reduced graphene oxide with maleimide: An experimental and theoretical investigation of the Diels-Alder [4+2] cycloaddition reaction
For large-scale graphene applications, such as the production of polymer-graphene nanocomposites, exfoliated graphene oxide (GO) and its reduced form (rGO) are presently considered to be very suitable starting materials, showing enhanced chemical reactivity with respect to pristine graphene, in addition to suitable electronic properties (i.e., tunable band gap). Among other chemical processes, a suitable way to obtain surface decoration of graphene is through a direct one-step Diels-Alder (DA) reaction, e.g. through the use of dienophile or diene moieties. However, the feasibility and extent of decoration largely depends on the specific graphene microstructure that in the case of rGO sheets is not easy to control and generally presents a high degree of inhomogeneity owing to various on-plane functionalization (e.g., epoxide and hydroxyl groups) or in-plane lattice defects. In an effort to gain some insights into the covalent functionalization of variably reduced GO samples, we present a combined experimental and theoretical study on the DA cycloaddition reaction of maleimide, a dienophile functional unit well-suited for chemical conjugation of polymers and macromolecules. In particular, we considered both mildly and strongly reduced GOs. Using thermogravimetry, Raman and X-Ray photoelectron spectroscopy, and elemental analysis we show evidence of variable chemical reactivity of rGO as a function of the residual oxygen content. Moreover, from quantum mechanical calculations carried out at the DFT level on different graphene reaction sites, we provide a more detailed molecular view to interpret experimental findings and to assess the reactivity series of different graphene modifications. This journal i
Toward the use of temporary tattoo electrodes for impedancemetric respiration monitoring and other electrophysiological recordings on skin
The development of dry, ultra-conformable and unperceivable temporary tattoo electrodes (TTEs), based on the ink-jet printing of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on top of commercially available temporary tattoo paper, has gained increasing attention as a new and promising technology for electrophysiological recordings on skin. In this work, we present a TTEs epidermal sensor for real time monitoring of respiration through transthoracic impedance measurements, exploiting a new design, based on the application of soft screen printed Ag ink and magnetic interlink, that guarantees a repositionable, long-term stable and robust interconnection of TTEs with external âdockingâ devices. The efficiency of the TTE and the proposed interconnection strategy under stretching (up to 10%) and over time (up to 96 h) has been verified on a dedicated experimental setup and on humans, fulfilling the proposed specific application of transthoracic impedance measurements. The proposed approach makes this technology suitable for large-scale production and suitable not only for the specific use case presented, but also for real time monitoring of different bio-electric signals, as demonstrated through specific proof of concept demonstrators
Ultraconformable, SelfâAdhering Surface Electrodes for Measuring Electrical Signals in Plants
The electrical signals in plant's physiological processes are of great interest in biology, biohybrid robotics, and sensors for interfacing the living organisms with an electronic readout and control. This paper reports on the application of conformable, self-adhering surface electrodes for the measurement and bidirectional stimulation of electrical signals in plants. The inkjet-printed poly(3,4-ethylenedioxythiophene) polystyrene sulfonate based electrodes are <3 ”m thick, light-weight, soft and flexible, and can be easily and non-invasively transferred onto plant's outer organs for surface potential recordings due to their realization on tattoo transfer paper. The devices prove to be extremely versatile for analyzing electrical signals in Dionaea muscipula, Arabidopsis thaliana, and Codariocalyx motorius and for stimulating mechanical responses in D. muscipula. A benefit over traditional electrodes is the van der Waals self-adherence of the thin electrodes, their intrinsic flexibility and adaptation also on small leaves while providing excellent readout. The same electrode allows long-term multicycle measurements over at least 10 days and, moreover, straightforward recordings on fast-moving organs such as snapping fly traps and endogenously oscillating leaflets. The results confirm that self-adhering soft organic electronics are particularly suitable for plant electrical signal analysis when easy-application, self-adaptation, and long-term performance are required in plant science, biohybrid robotics, and biohybrid sensors
Active Targeting of Sorafenib: Preparation, Characterization, and In Vitro Testing of Drug-Loaded Magnetic Solid Lipid Nanoparticles
: Sorafenib is an anticancer drug approved by the Food and Drug Administration for the treatment of hepatocellular and advanced renal carcinoma. The clinical application of sorafenib is promising, yet limited by its severe toxic side effects. The aim of this study is to develop sorafenib-loaded magnetic nanovectors able to enhance the drug delivery to the disease site with the help of a remote magnetic field, thus enabling cancer treatment while limiting negative effects on healthy tissues. Sorafenib and superparamagnetic iron oxide nanoparticles are encapsulated in solid lipid nanoparticles by a hot homogenization technique using cetyl palmitate as lipid matrix. The obtained nanoparticles (Sor-Mag-SLNs) have a sorafenib loading efficiency of about 90% and are found to be very stable in an aqueous environment. Plain Mag-SLNs exhibit good cytocompatibility, whereas an antiproliferative effect against tumor cells (human hepatocarcinoma HepG2) is observed for drug-loaded Sor-Mag-SLNs. The obtained results show that it is possible to prepare stable Sor-Mag-SLNs able to inhibit cancer cell proliferation through the sorafenib cytotoxic action, and to enhance/localize this effect in a desired area thanks to a magnetically driven accumulation of the drug. Moreover, the relaxivity properties observed in water suspensions hold promise for Sor-Mag-SLN tracking through clinical magnetic resonance imaging
Efficacy of a vegetal mixture composed of Zingiber officinale, Echinacea purpurea, and Centella asiatica in a mouse model of neuroinflammation: In vivo and ex vivo analysis
Experimental evidence suggests that neuroinflammation is a key pathological event of many diseases affecting the nervous system. It has been well recognized that these devastating illnesses (e.g., Alzheimer's, Parkinson's, depression, and chronic pain) are multifactorial, involving many pathogenic mechanisms, reason why pharmacological treatments are unsatisfactory. The purpose of this study was to evaluate the efficacy of a vegetal mixture capable of offering a multiple approach required to manage the multifactoriality of neuroinflammation. A mixture composed of Zingiber officinale (150 mg kg(-1)), Echinacea purpurea (20 mg kg(-1)), and Centella asiatica (200 mg kg(-1)) was tested in a mouse model of systemic neuroinflammation induced by lipopolysaccharide (LPS, 1 mg kg(-1)). Repeated treatment with the vegetal mixture was able to completely counteract thermal and mechanical allodynia as reported by the Cold plate and von Frey tests, respectively, and to reduce the motor impairments as demonstrated by the Rota rod test. Moreover, the mixture was capable of neutralizing the memory loss in the Passive avoidance test and reducing depressive-like behavior in the Porsolt test, while no efficacy was shown in decreasing anhedonia as demonstrated by the Sucrose preference test. Finally, LPS stimulation caused a significant increase in the activation of glial cells, of the central complement proteins and of inflammatory cytokines in selected regions of the central nervous system (CNS), which were rebalanced in animals treated with the vegetal mixture. In conclusion, the vegetal mixture tested thwarted the plethora of symptoms evoked by LPS, thus being a potential candidate for future investigations in the context of neuroinflammation
- âŠ