8,432 research outputs found

    Variation of Molecular Cloud Properties across the Spiral Arm in M 51

    Get PDF
    We present the results of high-resolution 13CO(1-0) mapping observations with the NRO 45m telescope of the area toward the southern bright arm region of M51, including the galactic center. The obtained map shows the central depression of the the circumnuclear ring and the spiral arm structure.The arm-to-interarm ratio of the 13CO(1-0) integrated intensity is 2-4. We also have found a feature different from that found in the 12CO results. The 12CO/13CO ratio spatially varies, and shows high values (~20) for the interarm and the central region, but low values(~10) for the arm. These indicate that there is a denser gas in the spiral arm than in the interarm. The distribution of the 13CO shows a better correspondence with that of the H\alpha emission than with the 12CO in the disk region, except for the central region. We found that the 13CO emission is located on the downstream side of the 12CO arm, namely there is an offset between the 12CO and the 13CO as well as the H\alpha emission. This suggests that there is a time delay between the accumulation of gas caused by the density wave and dense gas formation, accordingly star formation. This time delay is estimated to be ~10^7 yr based on the assumption of galactic rotation derived by the rotation curve and the pattern speed of M51. It is similar to the growth timescale of a gravitational instability in the spiral arm of M51, suggesting that the gravitational instability plays an important role for dense gas formation.Comment: 23 pages, 10 figures, PASJ Vol.54, No.2 (2002), in pres

    Synthesis of bulk, dense, nanocrystalline yttrium aluminum garnet from amorphous powders

    Get PDF
    Amorphous powders of Al2O3x2014;37.5 mol% Y2O3 (yttrium aluminum garnet (YAG)) were prepared by coprecipitation, decomposed at 800xB0;C, and hot-pressed uniaxally at low temperature (600xB0;C) and a moderate pressure (750 MPa). Optimum conditions yielded microstructures with only 2% porosity and partial crystallization of YAG. Further processing using high quasi-hydrostatic pressure (1 GPa) at 1000xB0;C enabled the production of fully crystallized YAG with gt;96% relative density and a nanocrystalline grain size of x223C;70 nm. 13

    SMA/PdBI multiple line observations of the nearby Seyfert2 galaxy NGC 1068: Shock related gas kinematics and heating in the central 100pc?

    Full text link
    We present high angular resolution (0.5-2.0") observations of the mm continuum and the 12CO(J=3-2), 13CO(J=3-2), 13CO(J=2-1), C18O(J=2-1), HCN(J=3-2), HCO+(J=4-3) and HCO+(J=3-2) line emission in the circumnuclear disk (r=100pc) of the proto-typical Seyfert type-2 galaxy NGC1068, carried out with the Submillimeter Array. We further include in our analysis new 13CO(J=1-0) and improved 12CO(J=2-1) observations of NGC1068 at high angular resolution (1.0-2.0") and sensitivity, conducted with the IRAM Plateau de Bure Interferometer. Based on the complex dynamics of the molecular gas emission indicating non-circular motions in the central ~100pc, we propose a scenario in which part of the molecular gas in the circumnuclear disk of NGC1068 is radially blown outwards as a result of shocks. This shock scenario is further supported by quite warm (Tkin>=200K) and dense (nH2=10^4cm^-3) gas constrained from the observed molecular line ratios. The HCN abundance in the circumnuclear disk is found to be [HCN]/[12CO]=10^-3.5. This is slightly higher than the abundances derived for galactic and extragalactic starforming/starbursting regions. This results lends further support to X-ray enhanced HCN formation in the circumnuclear disk of NGC1068, as suggested by earlier studies. The HCO+ abundance ([HCO+]/[12CO]=10^-5) appears to be somewhat lower than that of galactic and extragalactic starforming/starbursting regions. When trying to fit the cm to mm continuum emission by different thermal and non-thermal processes, it appears that electron-scattered synchrotron emission yields the best results while thermal free-free emission seems to over-predict the mm continuum emission.Comment: accepted for publication by ApJ; 35pages, 22 figures and 6 tables (at the end of the file); 3 figures have been decreased in quality to match size limi

    Jet-disturbed molecular gas near the Seyfert 2 nucleus in M51

    Full text link
    Previous molecular gas observations at arcsecond-scale resolution of the Seyfert 2 galaxy M51 suggest the presence of a dense circumnuclear rotating disk, which may be the reservoir for fueling the active nucleus and obscures it from direct view in the optical. However, our recent interferometric CO(3-2) observations show a hint of a velocity gradient perpendicular to the rotating disk, which suggests a more complex structure than previously thought. To image the putative circumnuclear molecular gas disk at sub-arcsecond resolution to better understand both the spatial distribution and kinematics of the molecular gas. We carried out CO(2-1) and CO(1-0) line observations of the nuclear region of M51 with the new A configuration of the IRAM Plateau de Bure Interferometer, yielding a spatial resolution lower than 15 pc. The high resolution images show no clear evidence of a disk, aligned nearly east-west and perpendicular to the radio jet axis, as suggested by previous observations, but show two separate features located on the eastern and western sides of the nucleus. The western feature shows an elongated structure along the jet and a good velocity correspondence with optical emission lines associated with the jet, suggesting that this feature is a jet-entrained gas. The eastern feature is elongated nearly east-west ending around the nucleus. A velocity gradient appears in the same direction with increasingly blueshifted velocities near the nucleus. This velocity gradient is in the opposite sense of that previously inferred for the putative circumnuclear disk. Possible explanations for the observed molecular gas distribution and kinematics are that a rotating gas disk disturbed by the jet, gas streaming toward the nucleus, or a ring with another smaller counter- or Keplarian-rotating gas disk inside.Comment: 5 pages, 4 figures, to appear in A&A Letters Special Issue for the new extended configuration at the IRAM PdB

    ALMA Temporal Phase Stability and the Effectiveness of Water Vapor Radiometer

    Full text link
    Atacama Large Millimeter/submillimeter Array (ALMA) will be the world largest mm/submm interferometer, and currently the Early Science is ongoing, together with the commissioning and science verification (CSV). Here we present a study of the temporal phase stability of the entire ALMA system from antennas to the correlator. We verified the temporal phase stability of ALMA using data, taken during the last two years of CSV activities. The data consist of integrations on strong point sources (i.e., bright quasars) at various frequency bands, and at various baseline lengths (up to 600 m). From the observations of strong quasars for a long time (from a few tens of minutes, up to an hour), we derived the 2-point Allan Standard Deviation after the atmospheric phase correction using the 183 GHz Water Vapor Radiometer (WVR) installed in each 12 m antenna, and confirmed that the phase stability of all the baselines reached the ALMA specification. Since we applied the WVR phase correction to all the data mentioned above, we also studied the effectiveness of the WVR phase correction at various frequencies, baseline lengths, and weather conditions. The phase stability often improves a factor of 2 - 3 after the correction, and sometimes a factor of 7 improvement can be obtained. However, the corrected data still displays an increasing phase fluctuation as a function of baseline length, suggesting that the dry component (e.g., N2 and O2) in the atmosphere also contributes the phase fluctuation in the data, although the imperfection of the WVR phase correction cannot be ruled out at this moment.Comment: Proc. SPIE 8444-125, in press (7 pages, 4 figures, 1 table

    Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: a systematic study

    Full text link
    With a view to the design of hard magnets without rare earths we explore the possibility of large magnetocrystalline anisotropy energies in Heusler compounds that are unstable with respect to a tetragonal distortion. We consider the Heusler compounds Fe2_2YZ with Y = (Ni, Co, Pt), and Co2_2YZ with Y = (Ni, Fe, Pt) where, in both cases, Z = (Al, Ga, Ge, In, Sn). We find that for the Co2_2NiZ, Co2_2PtZ, and Fe2_2PtZ families the cubic phase is always, at T=0T=0, unstable with respect to a tetragonal distortion, while, in contrast, for the Fe2_2NiZ and Fe2_2CoZ families this is the case for only 2 compounds -- Fe2_2CoGe and Fe2_2CoSn. For all compounds in which a tetragonal distortion occurs we calculate the MAE finding remarkably large values for the Pt containing Heuslers, but also large values for a number of the other compounds (e.g. Co2_2NiGa has an MAE of -2.11~MJ/m3^3). The tendency to a tetragonal distortion we find to be strongly correlated with a high density of states at the Fermi level in the cubic phase. As a corollary to this fact we observe that upon doping compounds for which the cubic structure is stable such that the Fermi level enters a region of high DOS, a tetragonal distortion is induced and a correspondingly large value of the MAE is then observed.Comment: 8 pages, 5 figure
    corecore