97 research outputs found
Bi2V1-x (Mg0.25Cu0.25Ni0.25Zn0.25) x O5.5-3x/2: A high entropy dopant BIMEVOX
A high entropy dopant approach has been used to prepare a new BIMEVOX ceramic system, Bi2V1-x(Mg0.25Cu0.25Ni0.25Zn0.25)xO5.5-3x/2. Structures were investigated using a combination of X-ray and neutron powder diffraction, with electrical characterisation by A.C. impedance spectroscopy. A γ-type phase is observed at room temperature over the compositional range 0.10 ≤ x ≤ 0.30, the upper limit of which is beyond that seen for all the single substituted systems based on these substituents, apart from BIMGVOX. No stabilisation of the fully disordered γ-phase is seen at room temperature over this compositional range, with only the incommensurately ordered γ'-phase evident below around 450 °C. Changes in defect structure are used to explain an apparent transition in the compositional variation of lattice parameters. The HE dopant approach has no detrimental effect on ionic conductivity, with values comparable to those of the single substituted systems based on the component oxides
Local structure and conductivity behaviour in Bi7WO13.5
Total neutron scattering analysis reveals details of cation coordination and vacancy distribution in Bi7WO13.5.</p
Dopant clustering and vacancy ordering in neodymium doped ceria
Lanthanide doped cerias, show fast oxide ion conduction and have applications as electrolytes in intermediate temperature solid oxide fuel cells. Here, we examine the long- and short-range structures of Ce1−xNdxO2−x/2 (0.05 ≤ x ≤ 0.30, NDC) using reverse Monte Carlo modelling of total neutron scattering data, supported by measurements of electrical behaviour using a.c. impedance spectroscopy. Three distinct features are evident in the local structure of NDC, viz.: clustering of Nd3+ cations, preferred Nd3+-oxide ion vacancy association and oxide ion vacancy clustering with preferential alignment in the 〈100〉 direction. Interestingly, the presence of preferential dopant cation-oxide ion vacancy association is also observed at 600 °C, although diminished compared to the level at room temperature. This suggests a continued contribution of defect association enthalpy to activation energy at elevated temperatures and is reflected in similar compositional variation of high- and low-temperature activation energies
Oxide ion distribution, vacancy ordering and electrical behaviour in the Bi3NbO7-Bi3YbO6 pseudo-binary system
National Centre for Research and Development (Poland) for grant no. DKO/Pl-TW1/National Centre for Research and Development (Poland) for grant no. DKO/Pl-TW1/National Centre for Research and Development (Poland) for grant no. DKO/Pl-TW1/6
13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16
Introduction. Cupriavidus necator H16 is a gram-negative bacterium, capable of lithoautotrophic growth by utilizing hydrogen as an energy source and fixing carbon dioxide (CO2) through Calvin-Benson-Bassham (CBB) cycle. The potential to utilize synthesis gas (Syngas) and the prospects of rerouting carbon from polyhydroxybutyrate synthesis to value-added compounds makes C. necator an excellent chassis for industrial application.
Objectives. In the context of lack of sufficient quantitative information of the metabolic pathways and to advance in rational metabolic engineering for optimized product synthesis in C. necator H16, we carried out a metabolic flux analysis based on steady-state 13C-labelling.
Methods. In this study, steady-state carbon labelling experiments, using either D-[1-13C]fructose or [1,2-13C]glycerol, were undertaken to investigate the carbon flux through the central carbon metabolism in C. necator H16 under heterotrophic and mixotrophic growth conditions, respectively.
Results. We found that the CBB cycle is active even under heterotrophic condition, and growth is indeed mixotrophic. While Entner-Doudoroff (ED) pathway is shown to be the major route for sugar degradation, tricarboxylic acid (TCA) cycle is highly active in mixotrophic condition. Enhanced flux is observed in reductive pentose phosphate pathway (redPPP) under the mixotrophic condition to supplement the precursor requirement for CBB cycle. The flux distribution was compared to the mRNA abundance of genes encoding enzymes involved in key enzymatic reactions of the central carbon metabolism.
Conclusion. This study leads the way to establishing 13C-based quantitative fluxomics for rational pathway engineering in C. necator H16
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups
Corresponding author R.J.Wilson ([email protected]); 113 pages, 90 figuresCorresponding author R.J.Wilson ([email protected]); 113 pages, 90 figuresIn early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011
The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups
In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science
collaboration initiated a study to investigate the physics potential of the
experiment with a broad set of different beam, near- and far-detector
configurations. Nine initial topics were identified as scientific areas that
motivate construction of a long-baseline neutrino experiment with a very large
far detector. We summarize the scientific justification for each topic and the
estimated performance for a set of far detector reference configurations. We
report also on a study of optimized beam parameters and the physics capability
of proposed Near Detector configurations. This document was presented to the
collaboration in fall 2010 and updated with minor modifications in early 2011.Comment: Corresponding author R.J.Wilson ([email protected]); 113
pages, 90 figure
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresMajor update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresThe preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
- …