906 research outputs found

    Ab initio calculations of the physical properties of transition metal carbides and nitrides and possible routes to high-Tc

    Full text link
    Ab initio linear-response calculations are reported of the phonon spectra and the electron-phonon interaction for several transition metal carbides and nitrides in a NaCl-type structure. For NbC, the kinetic, optical, and superconducting properties are calculated in detail at various pressures and the normal-pressure results are found to well agree with the experiment. Factors accounting for the relatively low critical temperatures Tc in transition metal compounds with light elements are considered and the possible ways of increasing Tc are discussed.Comment: 19 pages, 7 figure

    Field-Dependent Critical Current in Type-II Superconducting Strips: Combined Effect of Bulk Pinning and Geometrical Edge Barrier

    Full text link
    Recent theoretical and experimental research on low-bulk-pinning superconducting strips has revealed striking dome-like magnetic-field distributions due to geometrical edge barriers. The observed magnetic-flux profiles differ strongly from those in strips in which bulk pinning is dominant. In this paper we theoretically describe the current and field distributions of a superconducting strip under the combined influence of both a geometrical edge barrier and bulk pinning at the strip's critical current Ic, where a longitudinal voltage first appears. We calculate Ic and find its dependence upon a perpendicular applied magnetic field Ha. The behavior is governed by a parameter p, defined as the ratio of the bulk-pinning critical current Ip to the geometrical-barrier critical current Is0. We find that when p > 2/pi and Ip is field-independent, Ic vs Ha exhibits a plateau for small Ha, followed by the dependence Ic-Ip ~ 1/Ha in higher magnetic fields.Comment: 4 pages, 2 figures, Fig. 1 revised, submitted to Phys. Rev.

    Metallic ground state and glassy transport in single crystalline URh2_2Ge2_2: Enhancement of disorder effects in a strongly correlated electron system

    Get PDF
    We present a detailed study of the electronic transport properties on a single crystalline specimen of the moderately disordered heavy fermion system URh2_2Ge2_2. For this material, we find glassy electronic transport in a single crystalline compound. We derive the temperature dependence of the electrical conductivity and establish metallicity by means of optical conductivity and Hall effect measurements. The overall behavior of the electronic transport properties closely resembles that of metallic glasses, with at low temperatures an additional minor spin disorder contribution. We argue that this glassy electronic behavior in a crystalline compound reflects the enhancement of disorder effects as consequence of strong electronic correlations.Comment: 5 pages, 4 figures, accepted for publication in PR

    Dipole Interactions and Electrical Polarity in Nanosystems -- the Clausius-Mossotti and Related Models

    Full text link
    Point polarizable molecules at fixed spatial positions have solvable electrostatic properties in classical approximation, the most familiar being the Clausius-Mossotti (CM) formula. This paper generalizes the model and imagines various applications to nanosystems. The behavior is worked out for a sequence of octahedral fragments of simple cubic crystals, and the crossover to the bulk CM law is found. Some relations to fixed moment systems are discussed and exploited. The one-dimensional dipole stack is introduced as an important model system. The energy of interaction of parallel stacks is worked out, and clarifies the diverse behavior found in different crystal structures. It also suggests patterns of self-organization which polar molecules in solution might adopt. A sum rule on the stack interaction is found and tested. Stability of polarized states under thermal fluctuations is discussed, using the one-dimensional domain wall as an example. Possible structures for polar hard ellipsoids are considered. An idea is formulated for enhancing polarity of nanosystems by intentionally adding metallic coatings.Comment: 18 pages (includes 6 embedded figures and 3 tables). New references, and other small improvements. Scheduled for publication by J. Chem. Phys., Jan. 200

    Self-organized criticality induced by quenched disorder: experiments on flux avalanches in NbHx_x films

    Full text link
    We present an experimental study of the influence of quenched disorder on the distribution of flux avalanches in type-II superconductors. In the presence of much quenched disorder, the avalanche sizes are power-law distributed and show finite size scaling, as expected from self-organized criticality (SOC). Furthermore, the shape of the avalanches is observed to be fractal. In the absence of quenched disorder, a preferred size of avalanches is observed and avalanches are smooth. These observations indicate that a certain minimum amount of disorder is necessary for SOC behavior. We relate these findings to the appearance or non-appearance of SOC in other experimental systems, particularly piles of sand.Comment: 4 pages, 4 figure

    Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}

    Full text link
    Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied during room temperature annealing following heat treatment. The superconducting T_c, dc resistivity, and low-energy optical conductivity recover slowly, implying a long relaxation time for the carrier density. Short relaxation times are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon -- and the charge transfer band. Monte Carlo simulations suggest that these two relaxation rates are related to two length scales corresponding to local oxygen ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure

    Boron Isotope Effect in Superconducting MgB2_2

    Full text link
    We report the preparation method of, and boron isotope effect for MgB2_2, a new binary intermetallic superconductor with a remarkably high superconducting transition temperature TcT_c(10^{10}B) = 40.2 K. Measurements of both temperature dependent magnetization and specific heat reveal a 1.0 K shift in TcT_c between Mg11^{11}B2_2 and Mg10^{10}B2_2. Whereas such a high transition temperature might imply exotic coupling mechanisms, the boron isotope effect in MgB2_2 is consistent with the material being a phonon-mediated BCS superconductor.Comment: One figure and related discussion adde

    Optical transparency and local electronic structure of Yb-doped Y 2 O 3 ceramics with tetravalent additives

    Get PDF
    The results of optical transmission and X-ray core-level spectra measurements of Yb:Y 2 O 3 ceramics with different tetravalent sintering additives (ZrO 2 , CeO 2 and HfO 2 ) fabricated from nanopowders (produced by the laser ablation method) and then annealed at 1400 °C in air for 2 h are presented. It is found that the transmission values for ZrO 2 - and HfO 2 -doped ceramics at the lasing wavelengths are higher than those of CeO 2 -doped samples. The X-ray photoelectron spectra (XPS) O 1s spectra show that the relative intensity of oxygen defect peak detected for 3Yb:Y 2 O 3 + 5CeO 2 ceramics decreases substantially and consistently compared to that of 5Yb:Y 2 O 3 + 5HfO 2 and 3Yb:Y 2 O 3 + 5ZrO 2 samples. This can be attributed to a more complete filling of oxygen vacancies due to annealing-induced oxygen diffusion into the highly defective sintered ceramics. The measurements of XPS Ce 3d spectra showed that the insufficiently complete filling of the oxygen vacancies in the 3Yb:Y 2 O 3 + 5CeO 2 compound is due to the appreciable presence of trivalent cerium ions. © 2019 by the authors.Ministry of Education and Science of the Russian Federation, Minobrnauka: 3.7270.2017/8.9This study was supported by FASO (Theme "Electron" No. AAAA-A18-118020190098-5). The XPS measurements were supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.7270.2017/8.9) and the Government of the Russian Federation (Act 211, agreement No. 02.A03.21.0006). Fabrication of ceramic samples was performed in the framework of the state task of IEP UB RAS

    All-electron GW calculation based on the LAPW method: application to wurtzite ZnO

    Full text link
    We present a new, all-electron implementation of the GW approximation and apply it to wurtzite ZnO. Eigenfunctions computed in the local-density approximation (LDA) by the full-potential linearized augmented-plane-wave (LAPW) or the linearized muffin-tin-orbital (LMTO) method supply the input for generating the Green function G and the screened Coulomb interaction W. A mixed basis is used for the expansion of W, consisting of plane waves in the interstitial region and augmented-wavefunction products in the augmentation-sphere regions. The frequency-dependence of the dielectric function is computed within the random-phase approximation (RPA), without a plasmon-pole approximation. The Zn 3d orbitals are treated as valence states within the LDA; both core and valence states are included in the self-energy calculation. The calculated bandgap is smaller than experiment by about 1eV, in contrast to previously reported GW results. Self-energy corrections are orbital-dependent, and push down the deep O 2s and Zn 3d levels by about 1eV relative to the LDA. The d level shifts closer to experiment but the size of shift is underestimated, suggesting that the RPA overscreens localized states.Comment: 10 pages, 3 figures, submitted to Phys. Rev.

    Gaussian random waves in elastic media

    Full text link
    Similar to the Berry conjecture of quantum chaos we consider elastic analogue which incorporates longitudinal and transverse elastic displacements with corresponding wave vectors. Based on that we derive the correlation functions for amplitudes and intensities of elastic displacements. Comparison to numerics in a quarter Bunimovich stadium demonstrates excellent agreement.Comment: 4 pages, 4 figure
    corecore