640 research outputs found

    Many body localization with long range interactions

    Get PDF
    Many body localization (MBL) has emerged as a powerful paradigm for understanding non-equilibrium quantum dynamics. Folklore based on perturbative arguments holds that MBL only arises in systems with short range interactions. Here we advance non-perturbative arguments indicating that MBL can arise in systems with long range (Coulomb) interactions. In particular, we show using bosonization that MBL can arise in one dimensional systems with ~ r interactions, a problem that exhibits charge confinement. We also argue that (through the Anderson-Higgs mechanism) MBL can arise in two dimensional systems with log r interactions, and speculate that our arguments may even extend to three dimensional systems with 1/r interactions. Our arguments are `asymptotic' (i.e. valid up to rare region corrections), yet they open the door to investigation of MBL physics in a wide array of long range interacting systems where such physics was previously believed not to arise.Comment: Expanded discussion of higher dimensions, updated reference

    AKLT Models with Quantum Spin Glass Ground States

    Full text link
    We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid ground states, b) critical and ordered N\'eel states on bipartite infinite Cayley trees and c) critical and ordered quantum vector spin glass states on random graphs of fixed connectivity. We argue, in consonance with a previous analysis, that all phases are characterized by gaps to local excitations. The spin glass states we report arise from random long ranged loops which frustrate N\'eel ordering despite the lack of randomness in the coupling strengths.Comment: 10 pages, 1 figur

    On the magnetization of two-dimensional superconductors

    Full text link
    We calculate the magnetization of a two-dimensional superconductor in a perpendicular magnetic field near its Kosterlitz-Thouless transition and at lower temperatures. We find that the critical behavior is more complex than assumed in the literature and that, in particular, the critical magnetization is {\it not} field independent as naive scaling predicts. In the low temperature phase we find a substantial fluctuation renormalization of the mean-field result. We compare our analysis with the data on the cuprates.Comment: 8 pages, 3 figure

    On product, generic and random generic quantum satisfiability

    Full text link
    We report a cluster of results on k-QSAT, the problem of quantum satisfiability for k-qubit projectors which generalizes classical satisfiability with k-bit clauses to the quantum setting. First we define the NP-complete problem of product satisfiability and give a geometrical criterion for deciding when a QSAT interaction graph is product satisfiable with positive probability. We show that the same criterion suffices to establish quantum satisfiability for all projectors. Second, we apply these results to the random graph ensemble with generic projectors and obtain improved lower bounds on the location of the SAT--unSAT transition. Third, we present numerical results on random, generic satisfiability which provide estimates for the location of the transition for k=3 and k=4 and mild evidence for the existence of a phase which is satisfiable by entangled states alone.Comment: 9 pages, 5 figures, 1 table. Updated to more closely match published version. New proof in appendi

    The Weakly Coupled Pfaffian as a Type I Quantum Hall Liquid

    Full text link
    The Pfaffian phase of electrons in the proximity of a half-filled Landau level is understood to be a p+ip superconductor of composite fermions. We consider the properties of this paired quantum Hall phase when the pairing scale is small, i.e. in the weak-coupling, BCS, limit, where the coherence length is much larger than the charge screening length. We find that, as in a Type I superconductor, the vortices attract so that, upon varying the magnetic field from its magic value at \nu=5/2, the system exhibits Coulomb frustrated phase separation. We propose that the weakly and strongly coupled Pfaffian states exemplify a general dichotomy between Type I and Type II quantum Hall fluids.Comment: 4 pages, 1 figur

    Current fluctuations near to the 2D superconductor-insulator quantum critical point

    Full text link
    Systems near to quantum critical points show universal scaling in their response functions. We consider whether this scaling is reflected in their fluctuations; namely in current-noise. Naive scaling predicts low-temperature Johnson noise crossing over to noise power Ez/(z+1)\propto E^{z/(z+1)} at strong electric fields. We study this crossover in the metallic state at the 2d z=1 superconductor/insulator quantum critical point. Using a Boltzmann-Langevin approach within a 1/N-expansion, we show that the current noise obeys a scaling form Sj=TΦ[T/Teff(E)]S_j=T \Phi[T/T_{eff}(E)] with TeffET_{eff} \propto \sqrt{E}. We recover Johnson noise in thermal equilibrium and SjES_j \propto \sqrt{E} at strong electric fields. The suppression from free carrier shot noise is due to strong correlations at the critical point. We discuss its interpretation in terms of a diverging carrier charge 1/E\propto 1/\sqrt{E} or as out-of-equilibrium Johnson noise with effective temperature E\propto \sqrt{E}.Comment: 5 page

    Floquet Prethermalization in a Bose-Hubbard System

    No full text
    Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating can be exponentially suppressed when the drive frequency is large compared to the local energy scales of the system -- leading to long-lived 'prethermal' regimes. In this work, we experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model. By measuring the energy absorption of the cloud as the driving frequency is increased, we observe an exponential-in-frequency reduction of the heating rate persisting over more than 2 orders of magnitude. The tunability of the lattice potentials allows us to explore one- and two-dimensional systems in a range of different interacting regimes. Alongside the exponential decrease, the dependence of the heating rate on the frequency displays features characteristic of the phase diagram of the Bose-Hubbard model, whose understanding is additionally supported by numerical simulations in one dimension. Our results show experimental evidence of the phenomenon of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems
    corecore