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Many-body localization (MBL) has emerged as a powerful paradigm for understanding nonequilibrium
quantum dynamics. Folklore based on perturbative arguments holds that MBL arises only in systems with
short-range interactions. Here, we advance nonperturbative arguments indicating that MBL can arise in
systems with long-range (Coulomb) interactions, through a mechanism we dub “order enabled
localization.” In particular, we show using bosonization that MBL can arise in one-dimensional systems
with ∼r interactions, a problem that exhibits charge confinement. We also argue that (through the
Anderson-Higgs mechanism) MBL can arise in two-dimensional systems with log r interactions, and
speculate that our arguments may even extend to three-dimensional systems with 1=r interactions. Our
arguments are asymptotic (i.e., valid up to rare region corrections), yet they open the door to investigation
of MBL physics in a wide array of long-range interacting systems where such physics was previously
believed not to arise.
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I. INTRODUCTION

The phenomenon of many-body localization (MBL) has
drawn enormous interest from both the theory [1–8] and
experimental [9–12] communities. The intensive investi-
gation of the phenomenon has revealed a cornucopia of
exotic physics, including connections to integrability
[13–19], unusual response properties [20,21], a rich pattern
of quantum entanglement [22–26], and new types of order
that cannot arise in equilibrium [27–29]. MBL can also
prevent heating in periodically driven Floquet systems
[30–34] and thus protect new phases of driven quantum
matter [35–40]. MBL has thus emerged as a powerful new
paradigm for nonequilibrium quantum dynamics. However,
at the same time there has been a proliferation of no-go
arguments [41–50] constraining the settings in which
MBL can arise. One of the most constraining of these
is the restriction [1,51–53] to systems with short-range
interactions.
The argument against MBL in systems with long-range

interactions proceeds by examining the convergence of a
perturbative locator expansion in d-dimensional systems
when the Hamiltonian contains terms that decay as a
power-law function of distance ∼r−α. An old argument
due to Anderson [1] establishes that hopping terms with

α < d lead to the breakdown of the locator expansion (see
also Ref. [51]). A refinement of this argument [52,53]
establishes that two-body interactions with α < 2d also
break the perturbative expansion. Based on these results, a
folk theorem has arisen that holds that MBL cannot arise in
systems with interactions longer ranged than 1=r2d. This
excludes a great many experimentally relevant systems,
including systems of charges (interacting with a Coulomb
interaction in any dimension), and systems with dipolar
(1=r3) interactions in two and three dimensions. However,
this folk theorem rests on shaky foundations, since the
breakdown of the perturbation theory does not establish the
breakdown of localization. Intriguingly, recent experiments
[38] with dipoles seem to indicate MBL-type physics in a
setting where this folk theorem would suggest such physics
cannot arise. Could MBL survive after all in systems with
long-range interactions?
In this work we present nonperturbative arguments

indicating that MBL can arise with long-range interactions.
Our conclusions apply even to interactions longer ranged
than 1=rd. The key idea is that the long-range interactions
can drive the system into a nontrivial correlated phase,
naturally described in terms of emergent degrees of free-
dom with only short-range interactions. The problem can
then be mapped onto the classic analysis of Ref. [3] to
establish many-body localization. We dub this mechanism
“order enabled localization.” We demonstrate the viability
of this idea, using nonperturbative techniques to treat
the interaction, for Coulomb interacting systems in any
dimension (i.e., one-dimensional systems with ∼r inter-
actions, two-dimensional systems with log r interactions,
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and three-dimensional systems with 1=r interactions). The
arguments are presented in decreasing order of rigor, with
the one-dimensional analysis being on the firmest footing,
and the three-dimensional analysis the most speculative. In
one dimension our arguments make use of a phase that
exhibits charge confinement. In higher dimensions, it
makes use of superconductivity and the Anderson-Higgs
mechanism. Insofar as our analysis relies on a mapping to
Ref. [3], it shares similar limitations; viz., we can establish
localization only at low (but nonzero) temperatures [54].
Whether infinite-temperature localization can arise with
long-range interactions remains an open problem.
However, our work opens the door to the study of MBL
physics in a host of experimentally relevant low-temperature
systemswith long-range interactions.We emphasize that our
work differs from the classic analysis of Ref. [55] in that it
predicts a strictly zero conductivity at nonzero energy
density, up to rare region effects. It differs also from
Refs. [56,57] in that we do not restrict ourselves to
Anderson localization of single spin flips, and consider
instead many-body localization.

II. LOCALIZATION WITH CONFINING
INTERACTIONS IN ONE DIMENSION

We begin with a discussion of one-dimensional systems,
where the long-range interaction may be treated exactly
using the method of bosonization. We start with a con-
tinuum model that is inspired by the Schwinger model
[58–61] from high-energy physics. The Schwinger model
is a model of quantum electrodynamics in one dimension,
which exhibits charge confinement. It is formulated as a
one-dimensional Dirac fermion coupled to a gauge field.
For our purposes, however, it is more convenient to adopt a
description in which the gauge field has been integrated
out. The Hamiltonian that we study thus involves Dirac
fermions moving in one dimension with a long-range
constant force interaction (Coulomb interaction in one
spatial dimension). The Hamiltonian is H0 þHint, where

H0 ¼
Z

dk
2π

X
r¼�1

vðrk − kFÞc†r;kcr;k; ð1Þ

Hint ¼ −e2
Z

dxdyρðxÞjx − yjρðyÞ; ð2Þ

and ρðxÞ ¼ P
r¼�1c

†
rðxÞcrðxÞ. The argument is cleanest

when the theory is formulated in the continuum, in which
case an asymptotically large UV cutoffΛmust be placed on
the dispersion. Lattice formulations of the argument are
discussed after we introduce the main argument. The
Schwinger model itself has an additional parameter, which
is a uniform background electric field (which can be set to
have any value). We choose to set this uniform background
electric field to zero. Consideration of potential phase
transitions driven by uniform background field is deferred

to future work. There is a uniform positively charged
jellium background (introduced so that the energy density
remains finite in the thermodynamic limit). This back-
ground is taken to be rigid; i.e., we neglect any coupling to
phonons of the jellium.
We now make use of standard bosonization formulas

from Ref. [62] to obtain [63]

H0 ¼
Z

dx
ð2πÞ vFfπ

2Π2ðxÞ þ ½∇ϕðxÞ�2g; ð3Þ

Hint ¼
4e2

π

Z
dx
2π

ϕ2ðxÞ; ð4Þ

where ϕ describes fluctuations of charge density wave
order and we introduce Π as the conjugate momentum to
the ϕ field. We emphasize that for the continuum model
Eqs. (1) and (2), the bosonized form Eqs. (3) and (4) is
exact. For a lattice regularization of this model the
bosonized form will be only asymptotic, with corrections
that are irrelevant for the thermodynamics but potentially
important for the dynamics. These are discussed in the
section on lattice regularizations, Sec. II A. It is convenient,
however, to begin with a discussion of the continuum
model Eqs. (1) and (2), which exactly bosonizes to Eqs. (3)
and (4). This corresponds to a Klein-Gordon theory of free
massive scalar bosons. The density pattern in the ground
state (at a nonzero fermion density) shows crystalline long-
range order [61], and the phase may be thus thought of as a
kind of Wigner crystal where the usual constraints on long-
range order in one dimension have been evaded because of
the long-range interaction. We make this expression look
more familiar by casting it into the form

H ¼
Z

dq
ð2πÞ uq

�
Kqπ

2ΠðqÞΠð−qÞ þ 1

Kq
q2ϕðqÞϕð−qÞ

�
;

ð5Þ

where

uq ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2Vq

πvF

s
; Kq ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Vq

πvF

q ; Vq ¼
2e2

q2
: ð6Þ

Adding short-range interactions will shift Kðq → ∞Þ but
will not affect the physics of interest to us here. Note that
the bosonized description of the Schwinger model involves
a noncompact boson—this is a consequence of integrating
out the gauge field [64], and will be important to our
argument. Note also that so far the transformations per-
formed are exact at the operator level.
We now introduce disorder. We emphasize that the

standard prescription in the localization literature of per-
turbing about the infinite disorder state is unsuitable here
because of the long-range interaction. Not only will the
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perturbation theory not converge [52,53], but the infinite
disorder state itself is an inappropriate starting point—a
region of size L will have charge ∼

ffiffiffiffi
L

p
from the central

limit theorem, and will thus have an electrostatic energy
∼L3=2, which will diverge in a superextensive fashion in the
limit of large system size. Instead,we first treat the interaction
exactly by the method of bosonization, and then introduce
disorder. Our analysis is controlled in the regime when
disorder is weak compared to the interaction. We emphasize
also that the disorder is allowed to backscatter electrons (turn
right movers into left movers and vice versa), which is
physics that does not typically enter the high-energy liter-
ature. The disorder adds to the Hamiltonian a piece Hdis,
where (see Appendix A)

Hdis¼−
Z

dx

�
1

π
ηðxÞ∇ϕþ

�
ξ�ðxÞ
2πα

ei2ϕðxÞ þH:c:

��
: ð7Þ

Here, η represents forward scattering and ξ represents
backscattering. We make the standard assumption that η
and ξ can be modeled as independent short-range correlated
Gaussian random variables. Here, α ∼ 1=Λ is a UV cutoff.
At this stage, it is tempting to apply the classic

Giamarchi-Schulz renormalization group analysis [65],
which obtains the β functions for the disorder strength
D [defined by hξ�ðxÞξðyÞi ¼ Dδðx − yÞ], perturbatively in
weak disorder. Generalized to the present problem, an
analysis of this form gives ½ðdDÞ=dl� ¼ 3D; i.e., disorder is
always a relevant perturbation. However, the Giamarchi-
Schulz calculation is a zero-temperature calculation,
whereas we are interested in the behavior at nonzero
temperatures. Additionally, we wish to consider an isolated
quantum system, disconnected from any external heat bath,
such that one cannot use the Matsubara formalism, nor does
it make sense to talk about free-energy minimization.
Finally, we are interested not in the disorder averaged
properties, but rather in the behavior of a single sample in a
typical disorder realization.
The analysis of a disordered, interacting Luttinger liquid

away from its ground state, without the crutches of disorder
averaged field theory or the Matsubara formalism, may
appear to be a formidable task [50,66,67]. It is a problem,
however, that is amenable to analytical treatment. We start
by introducing the notation ξðxÞ ¼ DðxÞ exp½iζðxÞ�, and,
hence, rewrite the Hamiltonian (for a particular disorder
realization, after an integration by parts) as

H ¼
Z

dx
2π

vFπ2Π2ðxÞ þ vFð∇ϕÞ2 þ VðϕÞ; ð8Þ

VðϕÞ ¼ 4e2

π
ϕðxÞ2 þ 2DðxÞ

α
cos½2ϕ − ζðxÞ� − 2~ηðxÞϕ; ð9Þ

where ~ηðxÞ ¼ R
x dyηðyÞ, and ~η,DðxÞ, and ζðxÞ are taken to

be independent zero-mean random variables with short-
range correlations. We now introduce ϕ0ðxÞ to be the static

background field configuration that minimizes the
Hamiltonian,

vF∂2
xϕ0 ¼

4e2

π
ϕ0ðxÞ −

2DðxÞ
α

sinð2ϕ0 − ζÞ − ~η: ð10Þ

Note that ϕ0 simply represents the adjustment of theWigner
crystal to the disorder that we introduce; i.e., it represents the
classical ground state, where all quantum fluctuations have
been ignored. We assume that DðxÞ is a bounded random
variable 0 < DðxÞ < D0, with D0=α < e2=π, so that VðϕÞ
has a uniqueminimum.We reintroduce quantum fluctuations
by writing ϕðxÞ ¼ ϕ0 þ δϕ, and obtain the effective
Hamiltonian as a power series in small δϕ. This expansion
is well behaved since VðϕÞ has a unique minimum, in
contrast to the situation that is obtained for compact
potentials [62], where instantons connecting distinct minima
must be taken into account. Relabeling δϕ simply as ϕ, we
obtain the Hamiltonian (up to an unimportant additive
constant) as

H ¼
Z

dx
2π

vFπ2Π2ðxÞ þ vFð∇ϕÞ2

þ
�
4e2

π
−
4DðxÞ
α

cosð2ϕ0 − ζÞ
�
ϕ2 þOðϕ3Þ: ð11Þ

At leading order this is simply a theory of noninteracting
gapped bosons in a random potential, which is well known to
have all its (single-particle) eigenstates localized (see, e.g.,
Ref. [68] for an explicit discussion). The higher-order terms
come from the expansion of the cosine, are short ranged in
real space, and may be treated within a perturbative locator
expansion. Perturbative locator expansions of this formwere
shown to converge at sufficiently low (but nonzero) energy
densities [3] (up to possible rare region corrections [47]), and
thus localization should persist even when nonlinearities
from higher-order terms in the expansion are taken into
account; i.e., the Hamiltonian Eq. (8) should exhibit many-
body localization at sufficiently low (but nonzero) energy
densities.
There is a subtlety to be noted here. Given that we are

working in the continuum, the single-particle localiza-
tion length is unbounded above, whereas Ref. [3]
assumes a bounded localization length. Problems with
unbounded single-particle localization length and short-
range interactions have been studied in the MBL literature
[42,69,70]. Reference [42] showed that as long as ϒ ¼
gξ3dðEÞPðEÞ2½1 − PðEÞ�2 is small everywhere in the spec-
trum [where g ¼ D=α is the nonlinearity strength, ξðEÞ is
the localization length, and PðEÞ is the occupation number
for a system prepared in a Gibbs state parametrized by a
temperature T], the locator expansion converges at a typical
point in space. Now, at small energy densities (i.e., low
temperatures), and at small E, we surely have ϒ ≪ 1.
Meanwhile, since ξðEÞ and gðEÞ both grow as power-law
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functions of energy, but the PðEÞ function decays as an
exponential function of energy, we continue to haveϒ ≪ 1
at high energies, and a mapping onto Ref. [3] to establish
perturbative stability of MBL at a typical point in space is
possible [69].
Reference [42] also raised the possibility that rare “hot”

regions may break the locator expansion in the continuum.
This scenario was recently studied in detail in Ref. [70],
where it was concluded that rare regions would always lead
to delocalization, with a relaxation time scale that diverged
faster than expð1=TÞ at low temperatures. This “rare
region” problem is endemic to models with many-body
mobility edges [47], and the present model is no exception.
Whether the rare region problem can be circumvented
remains an open problem, which, however, has nothing to
do with the long-range interacting nature of the problem—
the Hamiltonian Eq. (8) is just as localized as would be a
short-range interacting problem in the continuum. Indeed,
the charge confinement in the model makes the interactions
between the available degrees of freedom effectively short
range (recall that interactions between dipoles in one
dimension are not long range), and thus many-body
localizable in the usual manner, even though the underlying
Hamiltonian had long-range interactions.
We now estimate the localization length for the low-lying

excited states. This is approximately the single-particle
localization length (since perturbation theory in the inter-
action converges at typical points in space). In one dimension
this is proportional to the scattering length l, which can be
calculated in a self-consistent Born approximation (SCBA)
with the Green function G ¼ ½1=ðE − 4e2=π − ℏvFk2αÞ�,
cutoff on the length scale l. For states just above the gap this
gives l ¼ ðℏvF=D0ΞÞ2=3α, where D0Ξ is the Fourier trans-
form of the disorder potential (i.e., Ξ is a disorder correlation
length) and α is the UV cutoff length scale. The analysis is
controlled only when D0Ξ ≪ ℏvF; i.e., disorder is weak
compared to the kinetic energy scale.
This localization length scale should be compared to the

de Broglie length λ, set by the inhomogeneity of the
potential. If the disorder is weak (as we are assuming),
then the de Broglie wavelength will be long, and so we
should account for central limit averaging of the disorder
over one de Broglie wavelength. We then have to solve

ℏvF
λ2

¼ D0

α

ffiffiffiffiffiffiffiffi
Ξ=λ

p
⇒ λ ¼ ðℏvF=D0ΞÞ2=3ðα2ΞÞ1=3: ð12Þ

Note that self-consistency requires λ ≫ Ξ, which is auto-
matically ensured at weak disorder. We can now observe
that ðl=λÞ ¼ ðα=ΞÞ1=3 is the standard control parameter for
weak localization theory [71]. When Ξ > α (such that the
UV cutoff is the smallest length scale in the problem), then
l=λ ≪ 1; i.e., the lowest-lying excited states are deep in the
locator limit.

A. Lattice regularizations

Thus far, we have worked with a model in the con-
tinuum. We now discuss lattice regularizations. The natural
tight-binding lattice generalization of the continuum prob-
lem we discuss above is

H ¼
X
k

½EðkÞ − μ�c†kck − e2
X
xy

ρxρyjx − yj þ
X
x

μxρx;

ð13Þ

where μx is a random potential, and where EðkÞ is the band
structure of the lattice Hamiltonian. We specialize to
fermions at incommensurate filling, leaving the problem
of commensurate fillings to future work. Standard phe-
nomenological bosonization [62,72,73] then predicts that
the bosonized Hamiltonian will take the form Hl þHnl,
where Hl is Eq. (8) with integrals replaced by sums and
continuum derivatives replaced by lattice derivatives, and
Hnl contains nonlinear corrections [terms of the form
ð∇ϕÞ3, ð∇ϕÞ4, etc.] coming from band curvature. At
incommensurate filling, when the density can be replaced
by the smeared density, the interaction bosonizes to a sum
of local terms, and while bosonization does produce
nonlinear terms, these are strictly short range [72,73].
Thus, the problem still maps (after manipulations analo-
gous to those discussed above in the continuum) to a
problem of massive bosons in a random potential with
short-range interactions. One can again appeal to Ref. [3] to
argue that this problem should be many-body localized.
We note that by going to a lattice we eliminate the

problem of an unbounded-above single-particle localiza-
tion length that complicates the analysis in the continuum.
However, since the bosonization formulas are applicable
only for “almost linear” dispersions, our analysis is still
restricted to low (but nonzero) energy densities, when
linearization about a Fermi surface is a sensible starting
point [74]. Whether infinite-temperature MBL can arise
here is an open problem that we leave to future work.
Parenthetically, we note that a recent numerical study [75]
does observe signatures of MBL in the dynamics of the
Schwinger model, but operates in a regime very different
from ours, where the interaction energy scale is the largest
energy scale in the problem.

III. LOCALIZATION WITH COULOMB
INTERACTIONS IN HIGHER DIMENSIONS

We now discuss how low-temperature MBL may arise in
higher-dimensional systems with long-range interactions.
The most natural generalization of our one-dimensional
example would involve considering Wigner crystals in
higher dimensions. However, the distortions of the Wigner
crystal interact via dipolar interactions [76], which in
dimensions higher than one are not purely short range. It
turns out that if the interaction is sufficiently long range to
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prohibit dissociation of dipoles, then the interaction
between dipoles is itself sufficiently long range to obstruct
a locator expansion [52]. Conversely, if the interaction
between dipoles is sufficiently short range to allow for a
locator expansion, then the energy cost of dissociating a
dipole is finite, such that at nonzero energy density there
exists a nonzero density of free charges, which interact via
the “bare” long-range interaction. Thus, the obvious
generalization of our discussion to higher dimensions is
problematic.
A more fruitful line of attack is opened up by viewing

our one-dimensional problem as an example of a confining
phase [58,59]. Given the intimate connections between
confinement and the Anderson-Higgs mechanism [77], we
are therefore prompted to consider Higgsed phases
(e.g., superconductors) as a possible platform for higher-
dimensional MBL with long-range interactions. We there-
fore focus in this section on using superconductivity to
eliminate the long-range charge interaction, and to obtain a
description of a correlated phase in terms of emergent
excitations with purely short-range interactions, which
may then be many-body localized. We begin with a dis-
cussion in two dimensions, before generalizing to three-
dimensional systems. The argument works equally well in
the continuum or on the lattice, modulo the usual subtleties
with localization in the continuum [42,69,70]. A jellium
background is again assumed, so that the uniform state has
finite electrostatic energy in the thermodynamic limit.
It is imperative that we do not have phonons in the

problem, since phonons (and Goldstone modes in general)
have a diverging single-particle localization length at low
energies [78], which is believed to pose an obstruction to
MBL [41,79]. We thus need a purely electronic mechanism
for superconductivity. We use the Kohn-Luttinger theorem
to this end [80,81] as a key building block for our analysis.
The Kohn-Luttinger argument in the continuum [80,81]
shows that a long-range isotropic repulsion generates
through perturbation theory a short-range attraction in a
sufficiently high angular momentum channel, which can
induce superconductivity. Lattice versions of the argument
are also known (see, e.g., Refs. [82,83] for recent dis-
cussions). That superconductivity arises in a high angular
momentum channel is a feature, since these superconduc-
tors lack the protection against disorder that s-wave super-
conductors inherit from the Anderson theorem [84], and are
thus easier to localize. However, it is important that the
superconductivity should be nonchiral, since chiral states
possess their own obstructions to localization [41]. This
may be accomplished either by working on a lattice where
the Kohn-Luttinger attraction arises in a one-dimensional
irreducible representation of the lattice symmetry group
(see, e.g., Ref. [83] for a specific example) or in the
continuum, if the energetics favor a nodal rather than a
chiral state. It is also imperative that there should not be a
spin SU(2) symmetry in the problem, since SU(2)

symmetry poses its own obstruction to MBL [45,85].
This may be evaded either by working with spinless
fermions or by applying a Zeeman field to break the spin
symmetry down to U(1).
We now discuss how superconductivity enables MBL in

a long-range interacting system. The argument is indepen-
dent of the precise mechanism of superconductivity (as
long as it is not mediated by the Goldstone bosons of some
continuous symmetry, e.g., acoustic phonons) and also of
the particular structure of the superconducting ground state
—as long as it is nonchiral, not protected by the Anderson
theorem, and has low enough symmetry that there are no
higher-dimensional irreducible representations [45]. We
emphasize that we are discussing here not superfluidity,
but rather true superconductivity, i.e., the charges are
coupled to a dynamical gauge field, and the Goldstone
mode is gapped out by the Anderson-Higgs mechanism.
We emphasize also that we are discussing a superconductor
treated as a closed quantum system, which is not in
thermodynamic equilibrium. Additionally, the supercon-
ductor is disordered, but the disorder is not so strong as to
destroy superconductivity.
Once the system becomes superconducting, the long-

range interaction is screened out. The effective degrees of
freedom in a superconductor are the Bogolioubov–de
Gennes quasiparticles, the vortices, and bound states of
the two [86,87], as well as the photons which mediate the
electromagnetic interaction. We emphasize that the cor-
rectly formulated excitations carry neither charge nor
dipole moment on long length scales [88]. This must be
the case, since otherwise there would be electromagnetic
fields at long length scales, which is inconsistent with
Meissner physics. For an s-wave superconductor in two
dimensions, the effective theory for quasiparticles and
vortices is simply the toric code [86,87], the topologically
ordered phase of which is the superconductor. The dis-
ordered toric code has been shown [27] to support
topological order even in its excited states, from which
it follows that an isolated two-dimensional s-wave super-
conductor can exhibit superconductivity even away from its
ground state, with vortices and quasiparticles localized on
disorder. The present problem differs somewhat in that the
quasiparticles are nodal rather than gapped. However, at the
level of the noninteracting theory, it is known that a two-
dimensional disordered nodal superconductor supports an
Anderson localized phase for the quasiparticles [89–91].
Meanwhile, the interactions (between vortices, between
quasiparticles, and between quasiparticles and vortices)
have been derived in, e.g., Ref. [91], and are purely short
ranged. If we can also demonstrate localization of the
photon mode, it will then follow from Ref. [3] that a system
of localized quasiparticles and vortices with weak short-
range interactions will be in a many-body localized phase,
notwithstanding that the bare electronic Hamiltonian con-
tained a long-range interaction.
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We now discuss the localization of the photon mode. In
the superconductor the photon mode is gapped out by the
Higgs mechanism, and can thus be ignored when ground-
state physics is the main concern, as in Refs. [89–91].
However, since we aim to establish MBL at low but
nonzero temperatures, the photon mode must be taken
into account. We now offer two arguments that the photon
mode is also localized, and thus does not materially alter
the conclusions reached above. Both arguments are adapted
from the equivalent arguments for Goldstone modes in
Ref. [78]. Note that in the case of the superconductor, the
Goldstone mode does not exist as a separate excitation, but
instead is absorbed into the photon mode via the Anderson-
Higgs mechanism.
We wish to describe a superconductor with order

parameter ΔðrÞ exp½iθðrÞ� minimally coupled to a gauge
field ðA0;AÞ which lives in two dimensions. The effective
theory for this is the Abelian Higgs model [86,87], for
which the equation of motion takes the form [92]

½∂2
t − cL;T∇2 þ ΔðrÞ2�AL;T ¼ 0; ð14Þ

where ΔðrÞ is the (spatially inhomogeneous) gap function,
AL (AT) is the longitudinal (transverse) photon mode (the
longitudinal photon mode being the remnant of the plasma
oscillation mode in the normal metal), and cL (cT) is the
longitudinal (transverse) photon velocity. In a physical
superconductor, cT is the speed of light while cL is of order
Fermi velocity. If the speed of light is taken to infinity (so
that the interaction is instantaneous), then the transverse
mode can be neglected as infinitely energetic, but the
longitudinal polarization must still be taken into account.
Note that disorder enters through a mass term, i.e., the
disorder vertex does not vanish at low frequency, and the
dispersion relation at low frequency takes the form
ω2 ≈ ΔðrÞ2 þ q2 ⇒ ω ¼ Δþ q2=2Δ. We now follow
Ref. [78] and first estimate a mean free path l from
SCBA, and then substitute kl into weak localization theory,
where k is the clean system wave vector corresponding to a
frequency ω. This analysis reveals that in spatial dimen-
sions d ¼ 1, 2, 3, kl is free of divergences at low frequency,
such that all low-energy photon modes can be localized
with bounded localization length, in sharp contrast to (non-
Higgsed) Goldstone modes [78] (see Appendix B for
explicit calculation). Moreover, the interactions between
photon modes and order parameter fluctuations are strictly
short range, so the photon sector does not present any
obstruction to localization. Since all modes involving
spatially nonuniform rotations of the phase are localized
with bounded localization length at low energy, the
obstructions to MBL discussed in Refs. [41,79] do not
apply. There is of course still the global mode involving
spatially uniform rotations of phase. It is not clear to us
what it would mean for such a mode to be localized or
extended. In any case, such a global mode cannot be used to

form spatially localized wave packets or to transport
energy, so its fate is irrelevant to our present discussion.
An alternative argument, also adapted from Ref. [78],

proceeds as follows. The dispersion relation for the
plasmon mode takes the form

ω2 ¼ Δ2 þ q2 þ 2ΔmðrÞ ⇒ 2Δ ~ω ∼ q2 þ ΔmðrÞ; ð15Þ

where m is the (zero-mean) fluctuation in the gap function
and Δ is the mean gap function, and to obtain the second
expression we take the scaling limit ω → Δ and define
~ω ¼ ω − Δ. Now, performing central limit averaging on the
disorder over one wavelength of the clean system, we
obtain

2Δ ~ω ∼ q2 þ Δm0qd=2; ð16Þ

where m0 is the typical fluctuation in the gap function. For
d < 4, the disorder term dominates the low-energy
dispersion relation (i.e., disorder is relevant). One can
estimate a localization length ξ in the scaling limit by
setting ~ω ∼ q2 and q ≈ ξ−1 and solving to obtain

ξ ∼m−2=ð4−dÞ
0 , which is finite for d¼1, 2, 3 and in d ¼ 1

agrees with our earlier results, identifying m0 ↔ D0Ξ.
It thus follows that the isolated disordered two-

dimensional superconductor is described by an effective
theory in which all sectors are localized with bounded
single-particle localization length at low energies, and with
short-range interactions. It then follows from Ref. [3] that a
many-body localized phase should exist, at least at low-
energy densities, notwithstanding that the bare Hamiltonian
contained long-range interactions. Of course, our entire
discussion is valid only in the low-energy part of the
spectrum, at energy densities below the gap scale. As such,
the rare region scenario endemic to problems with many-
body mobility edges arises here also. Whether infinite-
temperature MBL can be obtained (or the rare region
problems circumvented in some other way) is a problem
that we leave to future work.
We now offer an alternative, intuitive way to understand

our results. A Hamiltonian with a Gauss law interaction
(like ln r in two spatial dimensions) can always be rewritten
as a purely local Hamiltonian, with only short-range
interactions, by introducing a gauge field. Absent super-
conductivity, the obstruction to construction of a locator
expansion enters in this representation through the back
door, because the gauge field itself possesses an obstruction
to localization [78], and a system where one of the sectors is
protected against localization does not admit of a locator
expansion [41,48,50,79]. However, once we Higgs the
gauge field it loses its protection against localization,
and a local Hamiltonian where none of the sectors is
protected against localization can be many-body localized
in the usual manner.
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We speculate that our arguments for MBL with long-
range interactions may also extend to three-dimensional
systems with 1=r interactions. The basic argument follows
analogously to two dimensions (the most trivial extension
involves Josephson coupled superconducting layers). The
gauge field now lives in three spatial dimensions, but it
follows from our discussion of photon localization above
that the gauge field is localized with bounded localization
length at low frequency, even in d ¼ 3. However, there are
some differences in three spatial dimensions, the full
implications of which remain to be understood. One
significant difference is that vortices in a three-dimensional
superconductor are linelike objects, and one cannot argue
for their localization based simply on appeals to Ref. [3],
which discusses localization of pointlike excitations. This
problem may be circumvented in one of two ways. Either
one can work in the sector with no vortex excitations (easier
to accomplish in three dimensions since vortex-antivortex
pairs cost an energy that diverges linearly with the length of
the vortex line) or, alternatively, one can appeal to the body
of work establishing the existence of a glassy phase of
vortices that persists up to nonzero temperature in thermo-
dynamic equilibrium [93,94]. If a vortex glass phase exists
at finite temperature in thermodynamic equilibrium, then it
seems plausible that a localized phase of vortices should
also exist at finite energy density in an isolated quantum
system.
Another point to note is that in three dimensions, the

problems associated with being in the continuum (even
with short-range interactions) are much more severe, since
delocalized single-particle states arise above a critical
energy. These delocalized single-particle states are difficult
to reconcile with MBL (however, see Refs. [95–98]). The
canonical way to regulate problems arising at high energies
in the continuum is to place the theory on a lattice. In a
lattice gauge theory, where the photons are also placed on a
lattice, one has simply a theory of Z2 topological order [86],
which can be many-body localized [27] in the usual
manner. However, for physical superconductors, the elec-
trons live on a lattice, but the gauge field lives in the
continuum. As such, delocalized photon modes unavoid-
ably appear at high energies. However, high-energy pho-
tons are also noninteracting, because Maxwell’s equations
in vacuum are linear. Whether such noninteracting but
delocalized high-energy photon modes endow the system
with a finite relaxation time, and how long the relaxation
time is if so, is a subtlety that remains to be understood.
A detailed investigation of these issues is left to
future work.

IV. DISCUSSION

We plausibly argue that systems with long-range inter-
actions can be in a many-body localized phase. The basic
idea is that the long-range interaction can drive the system
into a correlated phase naturally described in terms of

emergent excitations with only short-range interactions,
which can be many-body localized in the usual manner. We
demonstrate this for a one-dimensional problem of fer-
mions with ∼r interactions, and for a two-dimensional
problem of fermions with log r repulsion, and speculate
that similar arguments may also apply to fermions in three
dimensions with ∼1=r repulsion; i.e., many-body locali-
zation is compatible with Coulomb repulsion in all physical
dimensions. Our arguments lean on Ref. [3] and are thus
asymptotic in the sense that they only establish localization
at typical points in space. Truly rigorous proofs of MBL,
such as Ref. [7], require a consideration also of rare region
effects, which may render conductivity finite even when
typical regions appear localized. Such effects are known to
be particularly severe in dimensions greater than one [49].
With that said, rare region obstructions have little to do with
whether the interactions are long range or not, and, more-
over, most existing rare region obstructions to MBL assume
short-range correlated disorder, and may not generalize to
situations where the disorder is, e.g., quasiperiodic. A fully
rigorous treatment including rare region effects would be an
interesting direction for future work, but is beyond the
scope of the present paper.
Our work brings into focus a host of additional con-

ceptual questions. For example, does low-temperature
MBL have a description in terms of emergent local
integrals of motion, similar to infinite-temperature MBL?
Recent work [18] has provided the beginnings of an
answer, but much remains to be understood. Also open
is the question of whether MBL can arise in mixed
dimensional problems, e.g., systems of fermions moving
in two dimensions, but interacting via a 1=r potential
mediated by a gauge field that lives in three dimensions.
Prima facie this seems unlikely, since disorder in two
dimensions will not localize a gauge field that lives in three
dimensions, and the three-dimensional gauge field could
then act as a higher-dimensional bath to delocalize the
system [48]; however, the problem deserves more careful
consideration.
A particularly interesting open question is whether MBL

can arise for interactions of range intermediate between
Coulomb and short range, e.g., the experimentally relevant
case of dipolar interactions [38]. On physical grounds, one
could argue that if Coulomb interactions admit of MBL,
and short-range interactions admit of MBL, then inter-
actions of intermediate range should admit of MBL also.
However, the particular methods we employ to establish
MBL with Coulomb interactions do not readily generalize
to interactions of intermediate range. In one dimension, a
density-density interaction bosonizes to VðqÞq2ϕ2, where
VðqÞ is the Fourier transform of the potential. The con-
fining potential VðrÞ ∼ −r is special in that it has
VðqÞ ∼ 1=q2, which produces a mass gap in the bosonic
spectrum. A less long-range interaction would bosonize to
a term of the form qαϕ2, where 0 < α < 2, and this would
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not open up a mass gap. The mass gap, we remind the
reader, is important to our argument in that it produces a
noncompact potential with a unique minimum, allowing us
to ignore instanton events. A term like qαϕ2 with α > 0
would leave us with a problem of bosons with a compli-
cated dispersion in a compact potential, which does
not appear amenable to analytical solution. Similarly,
two-dimensional problems with log r interactions, and
three-dimensional problems with 1=r interactions, are also
special in that this interaction can be mediated by a gauge
field with a natural kinetic energy, allowing us to map the
long-range interacting problem to a local theory (the
Abelian Higgs model) in which all sectors can be localized.
Alternative power laws for the interaction will not exhibit
this nice property. Thus, while physically it seems plausible
that interactions of intermediate range should also admit of
localization, the particular methods we employ herein do
not readily generalize, and a demonstration of MBL in such
systems will require fresh ideas. One possibility may be to
use the generalized Gauss laws that arise for higher rank
gauge fields [99]. A detailed investigation of the possibility
of MBL with intermediate-range interactions is left to
future work.
Finally, it is interesting to ask what other types

of correlated phase could serve as stepping stones to
MBL physics in long-range interacting systems, besides
the confined and Higgsed phases we discuss herein.
Notwithstanding these open questions, however, our
demonstration of low (but nonzero) temperature MBL in
long-range interacting systems already opens the door to
investigation of MBL physics in a host of experimentally
relevant systems with long-range interactions.
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APPENDIX A: BOSONIZATION

In this appendix, we provide more details regarding the
bosonization procedure employed in the main text. We
begin with a fermionic Hamilltonian of the form
H ¼ H0 þHint þHdis, where H0 is given by Eq. (1),
Hint by Eq. (1), and where

Hdis¼
Z

dxVðxÞc†ðxÞcðxÞ; where c¼ c1þc−1; thus;

Hdis¼
Z

dxVðxÞ
�X
r¼�1

c†rðxÞcrðxÞþ ½c†1ðxÞc−1ðxÞþH:c:�
�
:

ðA1Þ
Here, VðxÞ is a spatially random chemical potential. Note
that VðxÞ can scatter between right- and left-moving states.
We take VðxÞ to be short-range correlated in space,
with hVðxÞi ¼ 0 and hVðxÞVðx0Þi ¼ DKðx − x0Þ, where
Kðx − x0Þ integrates to unity and is only nonzero over some
finite range.
We now make use of the bosonization transformations

detailed in Appendix D of Ref. [62], and conclude that H0

bosonizes to the form Eq. (3), Hint bosonizes to the form
Eq. (4), and Hdis bosonizes to the form Eq. (7), with the
identification ηðxÞ ¼ VðxÞ and ξðxÞ ¼ VðxÞe−2ikFx. It fol-
lows that η and ξ are both zero-mean random variables,
whose correlation length is no longer than the correlation
length for VðxÞ. The rest of our discussion follows as in the
main text.
We emphasize that the bosonization transformations

leading to Eqs. (3), (4), and (7) are exact up to corrections
that are suppressed by powers of the UV cutoff. Thus, the
bosonization transformations are exact as long as the
interaction and disorder energy scales are much smaller than
the bandwidth of H0. The exactness of the bosonization
transformations is a peculiarity of the continuummodel with
perfect linear dispersion. In a lattice model, additional terms
will be generated, complicating the analysis.
We note also that while the bosonization transformations

do not require disorder to beweaker than the interaction, it is
nevertheless convenient for our analysis for the scales to be
ordered so. This is because taking the disorder to be weaker
than the interaction ensures diluteness of domain walls in the
ground state, which stabilizes the locator expansion. If
the disorder energy scale is large compared to the gap (set
by the interaction), then domain walls are dense even in the
ground state, and our analysis is ill controlled.

APPENDIX B: LOCALIZATION
OF HIGGSED PLASMON

In this appendix, we generalize the calculation of
Ref. [78] to a Higgsed Goldstone mode, and demonstrate
that the localization length is bounded at low energies in
spatial dimensions d ¼ 1, 2, 3.
Let us first review the calculation of Ref. [78], which

considers phonons (Goldstone modes) in a random
medium, with the equation of motion

ω2ϕðrÞ ¼ cðrÞ2∇2ϕðrÞ: ðB1Þ
Note that the disorder enters through a term that also carries
spatial derivatives. Meanwhile, the Green functions of the
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phonon field take the form Gðω; kÞ ¼ ½1=ðω − Ek − i=τÞ�,
where the scattering time τ comes from scattering off
disorder and Ek ¼ ck, with c being the mean phonon
speed. The scattering time may be estimated from the self-
consistent Born Approximation (SCBA), whereupon one
has to solve the self-consistent equation,

1 ¼ gðωÞ
Z

kd−1dk
ðω − EkÞ2 þ 1=τ2

: ðB2Þ

Here, ω is the phonon frequency and the disorder strength
gðωÞ ∼ ω2, because the disorder enters in a term that
involves spatial derivatives, such that the coupling to
disorder vanishes at long wavelengths or low frequencies.
For Ek ∼ k this yields τ−1 ∼ ωdþ1, and a mean free path
l ∼ τ ∼ ω−ðdþ1Þ. In one dimension, the localization length is
proportional to the mean free path, so ξ1D ∼ ω−2 diverges as
a power law at low frequency. In two dimensions, weak
localization theory predicts ξ2D ¼ expðklÞ. Taking k ¼ ω
and l ¼ ω−3, we obtain ξ2D ¼ expð1=ω2Þ, which diverges
exponentially fast at low frequencies. In three dimensions,
we have l ∼ ω−4 and kl ∼ ω−3. In three dimensions weak
localization theory predicts a delocalized phase for large kl;
i.e., the low-frequency phonon states are delocalized.
The analysis can be readily generalized to a Higgsed

plasmon mode, to determine whether the localization length
diverges close to the gap edge. Once again, self-consistent
Born approximation yields an expression of the form
Eq. (B2). However, since the disorder in Eq. (14) enters
through a term that is independent of spatial derivatives, the
disorder vertex is frequency independent at low frequency,
gðωÞ ∼ g. Additionally, the dispersion is modified to Ek ∼
Δþ k2 [Eq. (15)]. SCBA now predicts τ−1 ∼ ðω − ΔÞðd−1Þ=3
and a mean free path l ∼ τ1=2 ∼ ðω − ΔÞð1−dÞ=6. In one
dimension, the localization length is proportional to the
mean free path, which remains finite as ω → Δ. In two and
three dimensions, the control parameter forweak localization
theory, kl ∼ ðω − ΔÞð4−dÞ=6, is divergence free at low fre-
quency, and thus all states remain localized, even arbitrarily
close to the gap edge. Indeed, kl vanishes close to the gap
edge, indicating that close to the gap edge states are in the
Ioffe-Regel strong scattering regimewhereweak localization
gives way to strong localization [1]. Additionally, in the
presence of disorder therewill be Lifshitz tail states in thegap
ω < Δ, but these are expected to be localized with bounded
localization length in anydimension.One thus concludes that
a Higgsed plasmon mode can have all its low-frequency
states localized with bounded localization length. This
conclusion is also consistent with the alternative argument
adapted from Ref. [78], presented in the main text.
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