1,120 research outputs found

    Electrostatics of electron-hole interactions in van der Waals heterostructures

    Full text link
    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poissons equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.Comment: 10 pages, 8 figure

    Finite-Temperature Auxiliary-Field Quantum Monte Carlo for Bose-Fermi Mixtures

    Get PDF
    We present a quantum Monte Carlo (QMC) technique for calculating the exact finite-temperature properties of Bose-Fermi mixtures. The Bose-Fermi Auxiliary-Field Quantum Monte Carlo (BF-AFQMC) algorithm combines two methods, a finite-temperature AFQMC algorithm for bosons and a variant of the standard AFQMC algorithm for fermions, into one algorithm for mixtures. We demonstrate the accuracy of our method by comparing its results for the Bose-Hubbard and Bose-Fermi-Hubbard models against those produced using exact diagonalization for small systems. Comparisons are also made with mean-field theory and the worm algorithm for larger systems. As is the case with most fermion Hamiltonians, a sign or phase problem is present in BF-AFQMC. We discuss the nature of these problems in this framework and describe how they can be controlled with well-studied approximations to expand BF-AFQMC's reach. The new algorithm can serve as an essential tool for answering many unresolved questions about many-body physics in mixed Bose-Fermi systems.Comment: 19 pages, 6 figure

    Dynamical heterogeneity in a glass forming ideal gas

    Get PDF
    We conduct a numerical study of the dynamical behavior of a system of three-dimensional crosses, particles that consist of three mutually perpendicular line segments rigidly joined at their midpoints. In an earlier study [W. van Ketel et al., Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of dynamical length scales in this system.Comment: 11 pages, 7 figure

    Crossover behavior and multi-step relaxation in a schematic model of the cut-off glass transition

    Get PDF
    We study a schematic mode-coupling model in which the ideal glass transition is cut off by a decay of the quadratic coupling constant in the memory function. (Such a decay, on a time scale tau_I, has been suggested as the likely consequence of activated processes.) If this decay is complete, so that only a linear coupling remains at late times, then the alpha relaxation shows a temporal crossover from a relaxation typical of the unmodified schematic model to a final strongly slower-than-exponential relaxation. This crossover, which differs somewhat in form from previous schematic models of the cut-off glass transition, resembles light-scattering experiments on colloidal systems, and can exhibit a `slower-than-alpha' relaxation feature hinted at there. We also consider what happens when a similar but incomplete decay occurs, so that a significant level of quadratic coupling remains for t>>tau_I. In this case the correlator acquires a third, weaker relaxation mode at intermediate times. This empirically resembles the beta process seen in many molecular glass formers. It disappears when the initial as well as the final quadratic coupling lies on the liquid side of the glass transition, but remains present even when the final coupling is only just inside the liquid (so that the alpha relaxation time is finite, but too long to measure). Our results are suggestive of how, in a cut-off glass, the underlying `ideal' glass transition predicted by mode-coupling theory can remain detectable through qualitative features in dynamics.Comment: 14 pages revtex inc 10 figs; submitted to pr

    Glasslike Arrest in Spinodal Decomposition as a Route to Colloidal Gelation

    Get PDF
    Colloid-polymer mixtures can undergo spinodal decomposition into colloid-rich and colloid-poor regions. Gelation results when interconnected colloid-rich regions solidify. We show that this occurs when these regions undergo a glass transition, leading to dynamic arrest of the spinodal decomposition. The characteristic length scale of the gel decreases with increasing quench depth, and the nonergodicity parameter exhibits a pronounced dependence on scattering vector. Mode coupling theory gives a good description of the dynamics, provided we use the full static structure as input.Comment: 14 pages, 4 figures; replaced with published versio

    Dynamical field theory for glass-forming liquids, self-consistent resummations and time-reversal symmetry

    Full text link
    We analyse the symmetries and the self-consistent perturbative approaches of dynamical field theories for glassforming liquids. In particular, we focus on the time-reversal symmetry (TRS), which is crucial to obtain fluctuation-dissipation relations (FDRs). Previous field theoretical treatment violated this symmetry, whereas others pointed out that constructing symmetry preserving perturbation theories is a crucial and open issue. In this work we solve this problem and then apply our results to the mode-coupling theory of the glass transition (MCT). We show that in the context of dynamical field theories for glass-forming liquids TRS is expressed as a nonlinear field transformation that leaves the action invariant. Because of this nonlinearity, standard perturbation theories generically do not preserve TRS and in particular FDRs. We show how one can cure this problem and set up symmetry-preserving perturbation theories by introducing some auxiliary fields. As an outcome we obtain Schwinger-Dyson dynamical equations that automatically preserve FDRs and that serve as a basis for carrying out symmetry-preserving approximations. We apply our results to MCT, revisiting previous field theory derivations of MCT equations and showing that they generically violate FDR. We obtain symmetry-preserving mode-coupling equations and discuss their advantages and drawbacks. Furthermore, we show, contrary to previous works, that the structure of the dynamic equations is such that the ideal glass transition is not cut off at any finite order of perturbation theory, even in the presence of coupling between current and density. The opposite results found in previous field theoretical works, such as the ones based on nonlinear fluctuating hydrodynamics, were only due to an incorrect treatment of TRS.Comment: 54 pages, 21 figure

    Quantum quench spectroscopy of a Luttinger liquid: Ultrarelativistic density wave dynamics due to fractionalization in an XXZ chain

    Full text link
    We compute the dynamics of localized excitations produced by a quantum quench in the spin 1/2 XXZ chain. Using numerics combining the density matrix renormalization group and exact time evolution, as well as analytical arguments, we show that fractionalization due to interactions in the pre-quench state gives rise to "ultrarelativistic" density waves that travel at the maximum band velocity. The system is initially prepared in the ground state of the chain within the gapless XY phase, which admits a Luttinger liquid (LL) description at low energies and long wavelengths. The Hamiltonian is then suddenly quenched to a band insulator, after which the chain evolves unitarily. Through the gapped dispersion of the insulator spectrum, the post-quench dynamics serve as a "velocity microscope," revealing initial state particle correlations via space time density propagation. We show that the ultrarelativistic wave production is tied to the particular way in which fractionalization evades Pauli-blocking in the zero-temperature initial LL state.Comment: 32 pages, 27 figures; v2: references update

    Non-linear susceptibilities of spherical models

    Full text link
    The static and dynamic susceptibilities for a general class of mean field random orthogonal spherical spin glass models are studied. We show how the static and dynamical properties of the linear and nonlinear susceptibilities depend on the behaviour of the density of states of the two body interaction matrix in the neighbourhood of the largest eigenvalue. Our results are compared with experimental results and also with those of the droplet theory of spin glasses.Comment: 20 pages, 2 fig
    • …
    corecore