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Crossover behavior and multi-step relaxation in a schematic model of the cut-off glass
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We study a schematic mode-coupling model in which the ideal glass transition is cut off by a decay
of the quadratic coupling constant in the memory function. (Such a decay, on a time scale τI , has
been suggested as the likely consequence of activated processes.) If this decay is complete, so that
only a linear coupling remains at late times, then the α relaxation shows a temporal crossover from
a relaxation typical of the unmodified schematic model to a final strongly slower-than-exponential
relaxation. This crossover, which differs somewhat in form from previous schematic models of the
cut-off glass transition, resembles light-scattering experiments on colloidal systems, and can exhibit
a ‘slower-than α’ relaxation feature hinted at there. We also consider what happens when a similar
but incomplete decay occurs, so that a significant level of quadratic coupling remains for t ≫ τI .
In this case the correlator acquires a third, weaker relaxation mode at intermediate times. This
empirically resembles the β process seen in many molecular glass formers. It disappears when the
initial as well as the final quadratic coupling lies on the liquid side of the glass transition, but
remains present even when the final coupling is only just inside the liquid (so that the α relaxation
time is finite, but too long to measure). Our results are suggestive of how, in a cut-off glass, the
underlying ‘ideal’ glass transition predicted by mode-coupling theory can remain detectable through
qualitative features in dynamics.

PACS numbers: 64.70.Pf

I. INTRODUCTION

Many aspects of the slowing down of the dynamics of
a liquid as it is cooled or compressed towards its glass
transition are accurately captured by mode-coupling the-
ory (MCT) [1, 2]. Although cast in terms of collective
coordinates (Fourier components of density), MCT is of-
ten thought to model the formation of ‘cages’ whereby
a given particle is constrained by its neighbors in real
space. However, the theory, at least in its simplest (‘stan-
dard’) form (SMCT), breaks down in the final approach
to the glassy state (see, for example, Refs [3, 4, 5]). In
particular, MCT predicts a complete arrest of density
fluctuations at long times [1, 2]; this ideal glass tran-
sition occurs at weaker coupling (higher temperatures
and lower densities) than the experimental glass tran-
sition. The continued decay of fluctuations at stronger
couplings is usually attributed to activated (‘hopping’)
processes, not captured by SMCT [6]. In their simplest
form, these could involve escape from a cage by activa-
tion over a local barrier, which would give an Arrhenius
factor cutting off the divergence of the relaxation time.
However, in many glasses, the relaxation time shows a
stronger-than-Arrhenius dependence far into the regime
beyond the ideal glass transition, suggesting a collective
aspect to the hopping dynamics. Much current research
addresses many-body activated processes at a supra-cage
scale, often referred to as dynamical heterogeneity [7].

Most recent efforts to understand these extra relax-
ation pathways fall into two broad categories: analysis of
microscopic molecular dynamics simulations in the light
of free-energy landscape ideas [4, 8, 9], and study of
coarse-grained models [10, 11, 12] aimed to directly ad-
dress dynamical heterogeneity. Despite the new insights
afforded by these methods, we believe that the success of
MCT in describing the viscous liquid state means that
one should not abandon attempts to extend its validity
beyond the ideal glass transition. Indeed, several pro-
grammes along these lines have been carried out, either
by avoiding some of the approximations of MCT [13],
introducing new decay modes into the full MCT formal-
ism (creating ‘extended MCT’ or eMCT) [14], or adding
relaxation processes not easily described through mode-
coupling to a simplified version of the theory (see e.g.
Refs [15, 16]).

In this paper we take a related route: we make a spe-
cific ad-hoc adjustment to a set of equations that, unmod-
ified, are an accepted ‘schematic’ representation of SMCT
[17]. The adjustment we propose is inspired by recent
theoretical work [18] which addresses not just whether,
but how activated processes (‘instantons’) can violate the
central approximation of SMCT. The latter involves fac-
toring a four-point correlator into the product of two
two-point correlators [6]. Cates and Ramaswamy argued
that, in an instanton-dominated regime, the four-point
correlator should be better approximated by a single two-
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point correlator. A crossover to a regime in which that
approximation holds, in place of the MCT one, can grad-
ually weaken the density-density coupling and hence can
switch off the feedback that drives the arrest. This line
of reasoning gives a cut-off glass transition, but one with
a different mathematical structure from those proposed
in connection with various forms of eMCT [14, 19, 20].
The resulting model structure is also different from that
found by multiplying either the MCT correlator or the
MCT memory function by an independent decay func-
tion.

Below we explore in more depth the consequences
of a crossover, on an ‘instanton’ timescale τI , from a
quadratic to a linear dependence of four-point correla-
tors on two-point correlators. This we do within the
framework of a schematic, single-mode model. The sim-
plicity of this framework introduces several artificial fea-
tures precluding any detailed comparison with experi-
mental data; however, a wide range of glassy relaxation
scenarios can be found within this simple model. Though
not done here, this suggests that pursuit of similar ideas
within a full (multi-mode, wavevector-dependent) MCT
could be a fruitful avenue of future research.

Section II gives a sketch of the mode-coupling theory
of the glass transition, and its schematic versions are out-
lined in Sec. III. We introduce the phenomenology and
existing theory of the relevant glassy relaxation scenar-
ios in Sec. IV and the model with cut-off in Sec. V. Our
numerical procedures are detailed in Sec. VI, and results
(VII) and conclusions (VIII) follow.

II. MODE-COUPLING THEORY OF THE

GLASS TRANSITION

We now present a brief outline of the mode-coupling
theory of the glass transition, reviewed in depth else-
where [6, 21, 22].

As a glass-forming liquid is cooled or compressed, the
viscosity and, more generally, the relaxation times for
density fluctuations in the system increase rapidly. As
the glass transition is reached, unequal-time density cor-
relators that would, in an ergodic material, decay to zero
at late times are no longer able to do so on the timescale
of the experiment. A proportion of the density fluctua-
tions are then arrested or ‘frozen’, although the system
remains amorphous.

The theory describes this through a feedback mech-
anism driven by couplings among density fluctuations,
often thought to be associated with the caging of a par-
ticle by its neighbors. To quantify the effect, MCT uses
the normalized autocorrelation functions of density fluc-
tuations at wavevector q, defined as

φq(t) = 〈ρq(t)ρ
∗

q(0)〉/〈|ρq|
2〉 (1)

where the angular brackets denote equilibrium averages.

The φq evolve according to

φ̈q(t) + γqφ̇(t) + Ω2

qφq(t) + Ω2

q

∫ t

0

mq(t− t′)φ̇q(t
′) dt′ = 0

(2)
This is derived from the Newtonian equations of motion
for N interacting particles and represents their averaged
dynamics exactly. (Alternatively, the second-derivative
term may be dropped; the equation then describes a sys-
tem of interacting Langevin particles with uncorrelated
local noise terms. The latter can be used to describe a
system of Brownian colloids in the absence of hydrody-
namic interactions.) The microscopic frequencies Ωq may
be calculated from the static properties of the liquid and
γq is a regular damping term separated from the memory
kernel mq so that the latter describes only the dominant
effects near the glass transition. Approximations must
be made to allow mq to be calculated. The vital step in
MCT is the identification of the density fluctuation pairs
δρq1

δρq2
(with q1 + q2 = q) as the major contributions

to the memory kernel; those parts of mq uncorrelated
with these are dropped. Further approximations, includ-
ing notably the factorization of the four-point correlation
functions arising from these product modes, lead to an
expression for mq whose only input is the mean density
ρ and structure factor S(q) = 〈ρq(0)ρ∗q(0)〉 of the equi-
librium liquid state (see e.g. Ref. [23]). As the static
correlations described by S(q) increase, the feedback be-
comes stronger, and the decay of φq(t) stretches out to
longer times. Eventually, at the ideal glass transition
Tc(ρ) (or ρc(T )), the fluctuations never decay entirely,
and limt→∞ φq(t) ≡ fq > 0. (The residual value fq is
the q-dependent nonergodicity parameter.) S(q) remains
regular at Tc: mode-coupling theory does not require a
thermodynamic singularity to trigger the glass transition.

This approach has had remarkable success in mod-
elling the detailed time- and wavevector-dependence of
the φq(t) as the glass transition is approached, especially
in colloidal fluids [21], where it also provides a coher-
ent description of a glass-to-glass transition between ar-
rested phases dominated by inter-particle repulsion and
attraction respectively [24, 25, 26]. It successfully pre-
dicts the two-step decay of density correlations near the
glass transition, where a fast initial relaxation towards
a plateau (extending to infinite times at Tc) is followed
by a slower-than-exponential final decay. Furthermore,
several aspects of this relaxation are fixed by a single
exponent parameter λ, calculated from S(q).

Despite the success of mode-coupling theory in de-
scribing the viscous liquid state, agreement between the
asymptotic decay laws of SMCT and experiment rapidly
worsens at temperatures around 1.2Tg [27, 28, 29, 30,
31, 32, 33, 34]. This problem is often attributed to
the presence of additional relaxation processes not cap-
tured in the theory (sometimes referred to as hopping in
molecular systems). This school of thought argues that
SMCT captures the physics of an ideal glass transition (at
Tc ≈ 1.2Tg) which is avoided in reality but which would
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arise in a world where such additional processes did not
exist; worsening agreement at T ≈ 1.2Tg is then taken
to signify a qualitative change in transport mechanism
from collective to hopping processes (see, for example
[9, 27, 28, 30, 31, 33]).

III. SCHEMATIC MCT MODELS OF THE

GLASS TRANSITION

Many features of the full (wavevector-dependent)
SMCT can be captured by simple schematic models. In
these, eqn. 2 is reduced to

∂2

t φ(t)+νΩ2∂tφ(t)+Ω2φ(t)+Ω2

∫ t

0

dt m(t−τ)∂τφ(τ) = 0

(3)
where all q-dependence has been dropped. This single
correlator is usually associated with density fluctuations
at the wavelength of the peak in the structure factor [2].

In contrast to the full theory, there is no clear mi-
croscopic prescription for the form of m in schematic
models. The simplest form for the memory kernel giv-
ing a reasonably realistic picture of the glass transition
is m(t) = v2φ(t)2, with v2 an adjustable coupling pa-
rameter. Together with Eqn. 3, this defines the F2, or
Leutheusser, model [1]. The quadratic term is a simple
representation of the density-density coupling in the full
SMCT. The F2 model gives a discontinuous jump of the
nonergodicity parameter f ≡ limt→∞ φ(t) at a critical
value of the control parameter (v2 = 4) (a type B tran-
sition), and also yields a good qualitative description of
the characteristic two-step decay of φ(t) in the approach
to the glass transition. Its ability to fit experimental data
for φ(t) is limited by the fact that the detailed form of
the two-step decay is rather firmly fixed, and in some
respects is unrealistic. In particular, the height of the
intermediate-time plateau f c in φ(t) is always 0.5 in the
liquid (although this, and hence also the long-time limit
f , may be > 0.5 in the glass), and the slow (α) decay
at long times is described by a simple exponential rather
than by some slower function (most experimental data in
this regime may be well fitted by stretched exponentials
[35]).

The F2 model can be made more flexible by the ad-
dition of a linear term to the memory kernel, giving
m(t) = v1φ(t) + v2φ(t)2. This model, called F12 [17],
allows the plateau height f c and the form of the decay
to and from the plateau to be adjusted, and also gives
a (close to) stretched exponential form for the long-time
relaxation. However, the functional form of the decay
cannot be varied independently of the plateau height,
which itself is restricted to f c ≤ 0.5. Note that although
the quadratic term in m(t) has a clear analogue in the full
SMCT, the same is not true of this linear term. However,
the approach often taken in the literature on schematic
models is to add terms to m(t) to access a particular ar-
rest scenario even if terms of that order are not present
in the full model (see Ref. [17]).

A further enhancement to the data-fitting capabili-
ties of schematic MCT can be brought about by the in-
troduction of a second correlator φA(t) (see e.g. Refs.
[36, 37, 38, 39, 40, 41]). This obeys an analogous equa-
tion to Eqn. 3, and is coupled to the first correlator by a
memory kernel

mA(t) = vAφ(t)φA(t) (4)

The decay of φA(t) is thus broadly fixed by that of φ(t),
whereas φA(t) has no effect on φ(t). Various physical
motivations hve been given for the use of this extra cor-
relator. It was initially proposed to describe the motion
of a tagged particle [36], and has since been associated
with the correlations of a probing variable (e.g. dielec-
tric loss) and most recently with rotation-translation cou-
pling [37, 40]. This model can be more freely tailored to
fit data [41], and may also show an intermediate-time (β
or Johari-Goldstein [42]) decay, in addition to the usual
fast (microscopic) and slow (α) processes.

A glass transition, albeit a rather unrealistic one, is
also present in the F1 model, where m(t) = v1φ(t) [17].
Here, f does not have a jump as v1 is varied but grows
continuously for v1 ≥ 1 (a type A transition), and van-
ishes for v1 < 1. There is no intermediate-time plateau
in the correlator. The long-time relaxation may be very
slow, and a power-law decay is seen close to the transi-
tion. The model cannot produce stretched-exponential
decay [43].

IV. PHENOMENOLOGY AND THEORY OF

MULTI-STEP RELAXATION

As discussed above, standard mode-coupling theory
predicts a characteristic two-step relaxation of density
correlators near the glass transition. This is often said
to be associated with the formation and breaking up of
cages; each particle being trapped in a cage of its neigh-
bors for increasingly long times as the glass transition is
approached. The broad features, and many of the finer
details, of this MCT scenario are seen in scattering and
dielectric loss experiments on a wide range of substances
(see Refs [21] and [35] for reviews). However, many mate-
rials show more complex relaxation patterns, with three
or more decay processes (we refer to this as multi-step
relaxation).

Notably, hard-sphere colloid [44, 45] experiments
(which provide some of the strongest experimental sup-
port for SMCT) show a decay regime on the fluid side of
the glass transition in which the deviations from SMCT
fits to the slow α process suggest an even slower re-
laxation at late times. This additional slow process
at long times is also hinted at in microgel experiments
[46, 47, 48], although here the α relaxation is less well
resolved.

Glassy relaxation at intermediate times in molecular
systems often shows additional processes not accounted
for by SMCT when applied to density correlators only
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(see Ref. [40] for an overview). These relaxations are
usually discussed in terms of the susceptibility spectrum
χ′′(ω) (measured in light-scattering experiments) or the
dielectric response ǫ′′(ω). The former is given by the
product of the frequency ω and the Fourier cosine trans-
form of φ(t). Its peaks correspond to the troughs of
∂tφ(t); that is, to each decay process. The peak shapes
reveal the functional form of the relaxation; in particular,
exponential decay gives a symmetric (Lorentzian) peak of
width 1.14 decades, whilst stretched exponentials appear
broader and asymmetric.

Intermediate-frequency relaxations are often classed
into two groups. The first of these comprises positive-
curvature ‘wings’ [27, 29, 30, 33, 34, 49] on the high-
frequency side of the spectral peak corresponding to the
α process. The second group includes β peaks [31, 42,
50, 51, 52, 53], appearing between the initial fast and
final α relaxation processes. These weakly temperature-
dependent [42] peaks were initially attributed to the re-
laxation of intramolecular degrees of freedom; however,
they were subsequently shown to occur in a wide range of
substances composed of rigid molecules [42] and postu-
lated to be a universal feature of glassy relaxation. The
β peak is broader and weaker than the α peak, and tends
to be rather symmetric if the frequency is plotted on a
logarithmic scale [40, 42, 54].

The extent to which wings and peaks are manifesta-
tions of a single underlying phenomenon has been the
subject of much recent debate. On the one hand, some
dielectric results show the simultaneous presence of both
wing and β features [50, 55]. One of these papers [55]
also finds a difference in pressure dependence between the
wing and β processes. In addition, other dielectric exper-
iments show a connection between the excess wing and
the final α process, either by showing that they share the
same (strong) temperature dependence [28], or through
fitting both by a function with a single physical motiva-
tion [29, 30].

In contrast, other experiments are able to transform a
positive curvature wing into a negative curvature β pro-
cess. This can be achieved by varying the conditions of a
single material, either through aging the sample [56, 57]
or changing the temperature [58]. Such a transformation
can also be observed by moving through a class of mate-
rials, for example by studying a sequence of alcohols with
gradually decreasing hydrogen bonding [59], or more sim-
ply by changing the composition of a binary mixture [49].
The experimental situation is further complicated by sub-
tle differences between the relaxation dynamics probed
by different methods [60, 61]. Although the excess wing
has been seen in both dielectric loss [58] and light scat-
tering [27, 33] experiments, the β peak has only (to our
knowledge) been seen in dielectric measurements [49].

The microscopic mechanism underlying these
intermediate-frequency processes remains obscure
(see Refs. [52, 62, 63] for discussions). It is usually
attributed either to rotational (and possibly transla-
tional) motion in isolated regions (see e.g. Ref. [62]), or

to purely rotational relaxation of all molecules (see e.g.
Ref. [50]).

Although most discussion of β relaxation is in the ex-
perimental literature, a number of theories containing
intermediate-time processes have been proposed. The
approach in which intermediate relaxations emerge most
naturally is the ‘coupling model’ [64, 65]. The β process
is associated with the ‘primitive’ (i.e. uncoupled) relax-
ation time of this model, and a relation between the form
of the final α process and the β relaxation time is pre-
dicted, in good agreement with experiment.

As mentioned in section III, intermediate-time decays
are present in schematic SMCT models with a second
correlator introduced via Eqn. 4 [38, 39]. The use of
an SMCT model to study such processes might be ques-
tioned [40] on the grounds that intermediate-time fea-
tures often appear around the mode-coupling Tc, where
SMCT is expected to break down (see e.g. Ref. [27]).
However, using this approach, excellent fits to optical
Kerr effect data including wing features above the es-
timated Tc have been obtained [38]. By increasing the
couplings, these wings were transformed into realistically
broad and symmetric β peaks, although these results cor-
respond to lower temperatures than those considered in
the experiment [66].

The β relaxation has also been studied [67] using a
simple memory equation, which (in contrast to mode-
coupling) has a memory kernel with no dependence on
the density correlators. Instead, a kernel consisting of
the sum of two exponentials (decaying in time) is used,
and a gradual separation of α and β relaxation (see e.g.
Ref. [51]) as the couplings are increased is produced. The
simple form of the kernel means that both these processes
are purely exponential.

Note additionally that several systems (see Ref. [68]
for a discussion) show multiple stretched-exponential α
processes, but these fall outside our scope.

V. A SCHEMATIC MODEL OF THE CUT-OFF

GLASS TRANSITION

As discussed above, the ideal glass transition (to a per-
fectly arrested state with f > 0) predicted by SMCT is
not observed in real glass formers. Instead, it is cut off by
relaxation processes not captured by the mode-coupling
approximation. An important question is: what exactly
goes wrong with SMCT in this region?

For Newtonian systems the SMCT equations can be
derived by several routes, but one of these [69] is partic-
ularly revealing, as discussed by Cates and Ramaswamy
[18]. This approach allows the memory function to be
written formally as a sum of a ‘standard’ contribution,
which involves four-point density correlators, plus a sec-
ond contribution derived from coupling of configurational
to kinetic degrees of freedom. The standard contribution
reduces (essentially) to the MCT form when the four-
point density correlators are factored into products of
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two-point correlators. Cates and Ramaswamy addition-
ally gave arguments for why the second, nonstandard,
term is negligible in the glassy regime. If their argu-
ments are accepted, then for the ideal glass transition
to be avoided, it is necessary that the factorization of
the four-point correlator becomes a qualitatively wrong
approximation as the transition is approached.

Interestingly, in any regime dominated by localized ac-
tivated processes (“hopping”), this approximation does
indeed become qualitatively wrong [18]. When hopping
occurs in a system that would otherwise be fully arrested,
the generic relaxation process in any local neighborhood
involves a long wait while nothing happens. Then, af-
ter some randomly distributed time, a large local change
occurs that reconfigures the density nonperturbatively
(an “instanton”). This decorrelates all powers of the
density at the same instant. Indeed, if such decor-
relation is complete, one has 〈ρ2(x, 0)ρ2(x, t)〉/〈ρ4〉 ≃
〈ρ(x, 0)ρ(x, t)〉/〈ρ2〉: the four point correlator (at least,
the one involving squared local densities) decays as
the two-point correlator, not as its square. This is
the extreme opposite of a Gaussian fluctuation process,
whereby ρ correlations decay continuously by infinitesi-
mal increments, and the factorization of the four-point
correlator as adopted in SMCT is rigorously correct [69].

In a general glassy relaxation process some intermedi-
ate behavior can be expected; for instance, if several in-
stanton visits are required to achieve complete relaxation,
rather than just one, a limiting approximation combining
linear and quadratic terms may remain appropriate even
as the ideal glass transition is approached. Additionally,
while the squared-density correlator (〈ρ2(x, 0)ρ2(x, t)〉)
does enter some early forms of MCT [19], this in fact
describes the case of a perfectly flat S(q). (Equivalently,
it describes a system where the direct correlation func-
tion c(r), with 1 − Nc(q)/V ≡ 1/S(q) is a δ-function
in real space.) Within SMCT, which addresses general
forms for S(q), the four point correlator entering the ex-
act expression of [69] for the memory function is not the
autocorrelator of ρ2, but that of a bilinear convolution of
densities with a kernel whose range is fixed by c(r). This
nonlocality, unless negligible on the (uncertain) length-
scale of an instanton relaxation event, could also lead to
a quadratic plus linear behavior of the relevant four-point
correlator.

Based on these ideas, Cates and Ramaswamy [18] ar-
gued that the a model of the cut-off glass transition might
include a kernel in which quadratic terms are gradually
replaced by linear ones, in such a manner that the sys-
tem approaches the ideal glass state, acquiring some of
its properties, before reverting to the liquid. A suitable
choice is given by

m(t) = v1(t/τI)φ(t) + v2(t/τI)φ
2(t) (5)

where v1 and v2 are time-dependent coefficients and τI is
an “instanton timescale”. Note that τI need not be as
long as the typical waiting time for an instanton event: it
describes the time scale beyond which incremental, col-
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FIG. 1: Phase diagram of the F12 model in terms of the cou-
pling coefficients v1 and v2, showing sample trajectories for
our model. The dotted line shows the continuous type A
transition associated with the purely linear F1 model; the full
line shows the discontinuous type B transition. Trajectory (a)
shows gradual replacement of quadratic by linear correlation.
Trajectory (b) remains close to the glass transition line at all
times. We will associate (a) with colloidal systems, and (b)
with molecular systems.

lective decay modes are negligible compared to instanton-
mediated relaxation. Hence τI must lie well beyond the
time for the plateau in φ(t) to be reached but in principle
need not be as long as its eventual decay.

We note that this cutoff mechanism preserves an im-
portant prediction of SMCT – the growth of the plateau
height on the glass side of the ideal transition with a
square-root dependence on the distance from the transi-
tion line (ρc, Tc) (see e.g. Ref. [17]). Experimental data
are consistent with this singularity [21].

This model, which we explore in detail here, thus de-
fines trajectories in the phase diagram of the F12 model
(shown in Fig. 1), with t/τI as the curve parameter. As
the system moves along such a trajectory, it will accu-
mulate memory of all previous states along the path. We
might thus expect its behavior to differ strongly from
that seen in the pure F12 model with parameters set at
either the initial or the final points on such a trajectory.

As is traditional with schematic models, we put con-
straints on the model parameters (or here, the trajectory)
to ensure that the desired physics is recovered. To avoid
permanent arrest, we must choose v2(t → ∞/τI) < 4

and v1(t → ∞/τI) < 2v
1/2

2
(t → ∞) − v2(t → ∞) [17], so

that the system moves into the liquid state at long times
t ≫ τI (see Fig. 1). To have a cut-off glass transition,
rather than simply a crossover from one set of liquid-like

parameters to another, we must set v1(t = 0) > v
1/2

2
(t =

0)−v2(t = 0) which ensures the system begins its trajec-
tory within the ideal glass (although we will also consider
trajectories starting close to the ideal glass transition on
the liquid side). We of course require the model to start
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with some quadratic correlations, so that v2(t = 0) > 0.
We also demand v1(t → ∞) > 0, so that some linear
correlation remains at long times.

Within the above constraints, there is still consider-
able freedom in the choice of initial and final states; in
the path taken between them; and in the time spent on
different sections of that path. Thus we may begin with
an F2 or F12 model of the ideal glass, and leave differ-
ing amounts of linear and quadratic correlation in the
final state. For the present, we shall restrict ourselves to
straight paths in the (v1, v2) plane of the general form

vf
1,2 + (vi

1,2 − vf
1,2)f(t/τI) (6)

where f(t/τI) is a crossover function satisfying f(0) = 1
and f(t → ∞/τI) = 0, and i and f superscripts denote
initial and final states respectively. Sample trajectories
are shown in Fig. 1. Trajectory (a) remains closest to
the original theoretical arguments [18], with all quadratic
contributions gradually replaced by linear. Trajectory
(b) remains close to the ideal glass transition line at all
times, crossing from just inside the glass to just inside
the liquid: the motivation for this will be discussed later.

VI. NUMERICAL PROCEDURE

We solve the cut-off schematic MCT equation of mo-
tion (Eqns. 3 and 5) in the time domain using an al-
gorithm introduced and discussed in detail in Ref. [68].
This procedure is based on the fact that φ(t) is fixed by
φ(t′ < t) and m(t′ < t). It contains two important tech-
nical steps: the separation of slow and fast variations in
the memory integral, and the use of decimation. The
decimation allows the equation of motion to be solved
on progressively coarser grids as t is increased: any fast
decay occurs at short times and requires fine resolution,
while slow decay occurs at long times and can be cal-
culated on a coarser mesh. First, the equation is solved
for N points with step size δt over an interval T . The
solution is then transferred to a grid of N/2 points with
step size 2δt by taking the weighted average of groups of
neighboring points, and Eqns. 3 and 5 are then solved
up to 2T . The procedure is repeated until the final re-
laxation has been resolved. At short times, a Taylor
series expansion for φ(t) is used. The time derivatives
are discretized using interpolation polynomials (see e.g.
Ref. [70]). At each timestep, φ(t) is recalculated until
it converges to a relative accuracy of 10−9, a maximum
of 1000 iterations being allowed. We use a grid of 60 to
100 blocks of 256 points each. The stepsize in the first
block is 10−9, increasing to 2×10−9 in the second, and so
forth. The first 50 points are calculated using the short-
time expansion. All Fourier-transformed quantities are
calculated using a simplified Filon algorithm with linear
(rather than quadratic) interpolation [71]. Here, we use
up to 24 blocks of 180 points, each block corresponding
to a decade in frequency.

A representative sample of the results for φ(t) was
then reproduced using a (much slower) iterative proce-
dure based on the Laplace transform of Eqns. 3 and 5
[72], with the same numerical parameters as the Filon
algorithm. These checks, combined with those made by
previous authors who have used and developed such al-
gorithms, inspires confidence that the numerical results
reported below are accurate solutions of the governing
equations.

VII. RESULTS

We divide our results according to whether the final
point on the trajectory has or has not a nonzero value of
the quadratic coupling coefficient, v2(t → ∞).

A. Crossover to pure linear coupling

To begin, we concentrate on trajectories (such as (a) in
Fig. 1) where quadratic coupling is entirely removed at
long times. These maintain the closest connection with
the original theoretical motivation of the model [18].

Several features of Eqn. 6 (starting and finishing
points, crossover function, decay time) may, in principle,
be freely adjusted. The microscopic frequency Ω and the
damping term ν are also free; however, Ω serves simply to
fix the unit of time and ν only has significant influence on
the short-time dynamics [73]. In the following, we choose
Ω = 1 and ν = 10 (to avoid pronounced oscillations at
short times). A selection of results were checked with
ν = 20; as expected, this only appreciably changed the
initial relaxation.

We now determine in what way, and how strongly, ad-
justing Eqn. 6 affects the calculated form of φ(t). Here,
and in the following, we will often show our results as
plots of − ln(φ(t)/φp) vs. t on a log–log scale; here φp is
the value of φ(t) on the plateau of the decay. This rep-
resentation [72] is designed to isolate the final relaxation
away from the plateau. Stretched exponential relaxation
(∝ exp(−(t/τ)β), with τ some characteristic timescale)
will appear as a straight line, with slope equal to the
stretching exponent β. The standard φ(t) versus log t
plots will be shown in insets.

Some considerations concerning the structure of our
model allow us to restrict the choice of starting point.
We wish to study the crossover from a model with signif-
icant quadratic correlation: this rules out starting near
the type A transition where linear correlation is domi-
nant. We also follow early work on schematic models
[72] in starting close to (within ±0.2 of) the type B tran-
sition. Starting at higher couplings would introduce a
substantial region of decay determined entirely by the
arbitrary crossover function f(t/τI) and the properties
of the SMCT model deep in the (unrealistic) ideal glass.
Furthermore, the effects of such a decay would propagate
through to all later times. In this subsection (VII A), we
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FIG. 2: Long-time decay for a range of end points. In all
cases, the start point is vi

1 = 0, vi
2 = 4.01). From top to

bottom, (vf
1

= 0, vf
2

= 0), (0.2, 0), 0.4, 0), (0.6, 0), (0.8, 0),
(0.99, 0). f = exp(−t/τI); τI = 108. Dotted lines show expo-
nential decays.

will specialize further to paths with vi
1

= 0. This is the
most literal implementation of our theoretical arguments.
In addition, although we have verified that the results for

trajectories with vf
1
6= 0 are broadly similar, the crossover

phenomena we wish to discuss emerge most clearly when
the initial state contains no linear correlation.

The system shows very strong sensitivity to the finish-
ing point of the trajectory. Figure 2 shows decay curves

for fixed starting point (vi
1

= 0, vi
2

= 4.01), fixed vf
2

= 0,

vf
1

varying from 0 to 0.8 in steps of 0.2 and an additional

value of vf
1

= 0.99 (just within the liquid). In all cases,

τI = 108. For vf
1

= 0 (top curve), the final decay is purely

exponential. However, as vf
1

increases, a region of slower-

than-exponential decay develops at t ∼ τI . For larger vf
1
,

this decay becomes extremely slow, as may also be seen
from the inset to Fig. 2. This behavior may be attributed
to the growth of linear correlations: having moved away
from one glass transition, the system approaches another
(that of the F1 model), and its dynamics acquire an ad-
ditional slow contribution. At very long times, the decay
becomes exponential. This is a generic feature of all MCT
models with discrete wave-vectors [73] (which naturally
includes single-correlator models).

The relative importance of the trajectory endpoint in
determining the decay of φ(t) might be expected: for any
reasonable choice of crossover function, the system will
spend an infinite amount of time on the final section of
the path, however small this is taken to be.

We now check the sensitivity of the system to the
choice of crossover function f(t/τI). Figure 3 shows two
trajectories: both start at (vi

1
= 0, vi

2
= 4.2) and finish

at vf
2

= 0. The upper trajectory has vf
1

= 0.05 (very far

from the type A transition), and the lower has vf
1

= 0.95
(close to the type A transition). Each trajectory is plot-
ted for an exponential crossover function (solid line), a
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FIG. 3: Range of crossover functions f(t/τI). All start at

(vi
1 = 0, vi

2 = 4.2) and finish at vf
2

= 0. The upper trajectory

has vf
1

= 0.05 and the lower has vf
1

= 0.95. Each trajectory
is plotted for an exponential crossover function (solid line),
a power law (∝ 1/(1 + t/τI)) (dotted line) and a very sharp
logistic law (∝ 1/(1 + exp(5(t − τI)/τI))) (dashed). In all
cases, τI = 105. The dotted lines on the left of the plots show
exponential decay.

power law (∝ 1/(1+t/τI)) (dotted line) and a very sharp
logistic law (∝ 1/(1+exp(5(t− τI)/τI))) (dashed). In all
cases, τI = 105. At longer times (τ ≥ 106), the influence
of f(t/τI) is not strong, all trajectories lie close to par-
allel, and the choice of final coefficients plays the most
important role in fixing the behavior of φ(t). This is re-
assuring, given that theory provides no clear arguments
as to how f(t/τI) should be chosen. The crossing of the

exponential and power-law lines for vf
1

= 0.95 can be un-
derstood by realising that while the exponential gives a
quicker initial decay, it also approaches the type A tran-
sition more rapidly, thereby acquiring an additional slow
contribution at earlier times than the power-law trajec-
tory.

However, the situation is different at times ∼ τI . In
this region, the decay curves fall into groups according
to the choice of f(t/τI). This means that the detailed
form of the initial decay from the plateau will be sensitive
to the crossover function: we return to this point later.
Unless otherwise stated, we use an exponential crossover
in the following.

The final free quantity in the model is the decay time
τI . On the glass side of the ideal transition, this directly
sets the timescale of the final relaxation (see the right-
most four trajectories in figure 4, where τI = 108), and
varying τI leaving the other model parameters fixed sim-
ply serves to shift the final decay along the time axis.
Close to the transition on the liquid side, the role of τI

depends on how close it is to the timescale of the α relax-
ation in the unmodified schematic model. In figure 4, we
plot a series of trajectories, all with a rather large decay

time (τI = 108) and all finishing at (vf
1

= 0.9, vf
2

= 0)
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FIG. 4: Range of starting points on either side of the ideal
glass transition, moving from (vi

2 = 3.8) to (vi
2 = 4.2) in steps

of 0.05. In all cases, vi
1 = 0, (vf

1
= 0.9, vf

2
= 0) and τI = 108.

For this large value of τI , trajectories starting on the liquid
side of the line are only weakly affected by the cutoff; those on
the glass side show extra slower-than-exponential relaxation
at long times. Dotted lines show exponential decay.

(close to the type A transition). The starting point is var-
ied from (vi

1
= 0, vi

2
= 3.8) to (vi

1
= 0, vi

2
= 4.2) in steps

of 0.05, crossing the ideal glass transition at v2 = 4. In
this case, τI is too long to interfere significantly with the
relaxation in the approach to the ideal transition from the
liquid side, and the φ(t) here are very close to those of the
unmodified F2 model. In particular, they do not show the
extra slow process at long times discussed above, which
only appears on the glass side of the ideal transition.

If we choose a shorter decay time τI = 105 (still much
greater than the time required to reach the plateau) (fig-
ure 5), the α relaxation close to the ideal transition on
the liquid side may also be affected by the cutoff, acquir-
ing an additional slow process at long times as described
above. Again, the timescale of the relaxation on the glass
side of the ideal transition is directly set by τI .

All these trajectories retain no quadratic coupling as
t → ∞. All such trajectories starting within the ideal
glass (or close to it and with a sufficiently short τI) and

finishing with vf
1
6= 0 display certain generic long-time

properties: an initial exponential decay from the plateau
(inherited from the F2 model) followed by a rather rapid
crossover to a slower-than-exponential decay. This pro-
duces a characteristic kink in the − ln(φ(t)/φp) vs. t
plots. Such behavior is straightforward to rationalize
in terms of crossover between the starting and finishing
models.

Also, it is not unlike the behavior seen in light scatter-
ing experiments on colloidal systems [44, 45]. Note that
these colloid data are usually fitted to SMCT with shifted
parameters, chosen to bring the ideal and the actual glass
transition into register. This gives reasonable agreement,
but, as mentioned before, the deviations suggest an un-
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FIG. 5: Range of starting points on either side of the ideal
glass transition, moving from (vi

2 = 3.8) to (vi
2 = 4.2) in steps

of 0.05. In all cases, vi
1 = 0, (vf

1
= 0.9, vf

2
= 0) and τI =

105. For this smaller value of τI , trajectories on both sides of
the SMCT transition line show extra slower-than-exponential
relaxation at long times. Dotted lines show exponential decay.

accounted slow process beyond the α relaxation time.
(Note however that the number of data points at these
long times is often limited.) One alternative viewpoint
is to assert that for densities between the ideal and the
actual glass transition ρc ≤ ρ ≤ ρg, the observed α re-
laxation is the result of an instanton-induced cut-off and
should be calculated accordingly, not by shifting param-
eters in SMCT. For suitably chosen trajectories within
the schematic model, this could account in principle for
the deviations.

However, there is considerable experimental evidence
to support the original identification of the arrest in
colloidal fluids with the SMCT transition [44, 45]. In
these materials, the absolute values of the viscosity are
very high, and the system appears arrested even when
the slow relaxation covers only around five decades af-
ter the microscopic relaxation (in contrast to more than
ten decades in molecular glasses). This means that the
system may become glassy at (relatively speaking) lower
couplings, and the experimentally-observed arrest may
occur close to ρc.

Furthermore, the scaling properties of φ(t) (see e.g.
Ref. [17]) are verified on this assumption (i.e. ρg = ρc).
In addition, the plateau becomes clearer at ρc and its
subsequent growth is consistent with the MCT cusp sin-
gularity [17, 21]). It may therefore be that a scenario
such as that shown in figure 5 is more appropriate. Here,
τI is shorter, and the cutoff interferes with the α relax-
ation close to the transition on the liquid side, producing
a slow final relaxation. It should be noted that the above
figures should not be interpreted literally as sets of results
for a colloidal system at different densities. For each fig-
ure, the relaxation time τI is fixed, but in real systems
some density dependence would be expected.
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B. Crossover to mixed coupling

We now consider another class of trajectories (such as
(b) in Fig. 1). These also begin on the glass side of the
type B transition and cross over to the liquid. However,
we now choose the final point to lie fairly close to the
liquid-glass transition line, so that both quadratic and
linear coupling remain at long times. Though moving
away somewhat from the arguments originally presented
in Ref. [18], a rationale for retaining some quadratic cou-
pling was given in Section V above. Additionally, the
connection between the full and schematic memory ker-
nels is not completely clear, so that an endpoint with a
reduced but non-zero quadratic coupling might in fact be
the best schematic representation of a full q-dependent
model with purely linear coupling (rather as the F12

model is, by common consent, the best schematic rep-
resentation of the full model with purely quadratic cou-
pling). One might further argue that, as soon as in-
stanton processes have made the system fluid, the dy-
namics should again be determined by SMCT. Also,
to our knowledge, the ‘slower-than-α’ process discussed
above does not occur in molecular glasses, and the low-
frequency side of the α peak is well described by SMCT
both above and below Tc . It then seems reasonable to
consider trajectories finishing close to the ideal transition
line with the intention of preserving this agreement. To
obtain a stretched exponential final decay, we use vi

1
6= 0,

corresponding to an F12 model.
In atomic and molecular (as opposed to colloidal) sys-

tems, glassy relaxation is often discussed in terms of the
spectrum χ′′(ω), defined in Section IV, and we will adopt
this representation in the following.

Sample χ′′(ω) for short trajectories starting and fin-
ishing close to the glass transition line are shown in Fig.
6, and the corresponding ln(φ(t)/φp) plots are shown in
the inset. The final slow decay process associated with
the dominance of linear coupling is now absent, leaving
a standard stretched exponential α relaxation (see inset
to Fig. 6), which moves out to longer times as the end
of the trajectory is moved closer to the ideal glass line.
However, a weaker process now emerges at intermediate
times.

Again, it is straightforward to rationalize the relax-
ation behavior in terms of the contributions of differ-
ent stages of the trajectory. Thus φ(t) first decays to a
plateau set by the glass side of the ideal transition. At
times t ∼ τI , it crosses to a conventional F12 viscous liq-
uid state, which now dominates the long-time dynamics
and leads to a standard final α relaxation. To understand
the form of the intermediate-time relaxation, we note
that the plateau height in the viscous liquid is constant
within MCT, but grows (with a square root dependence
on the distance from the transition line) in the glass [6].
This means that, on crossing the ideal glass line, φ(t) falls
from the glass plateau value to that of the liquid, leading
to a decay at times t ∼ τI . This mimics the β relaxation
discussed earlier and gives a good qualitative agreement
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FIG. 6: Range of loss spectra showing an intermediate-
frequency decay process. These results should be compared
with the dielectric data of Refs [51, 53, 74, 75]. Inset shows
the same trajectories plotted as − ln(φ(t)/φp) vs. t, with
the dotted lines showing exponential decay. The stretched-
exponential nature of the final relaxation is clearly visible. In
all cases, vi

1 = vf
1

= 0.5, vi
2 = 2.9242 and f = exp(−t/τI)

with τI = 106. vf
2

is varied from 2.9042 to 2.9122 in steps of
0.002 (running from right to left in the main figure and left to
right in the inset). These trajectories start and finish rather
close to the glass transition line.

with dielectric loss experiments on intermediate-fragility
liquids with a degree of hydrogen bonding (compare Fig.
6 with, for example [51, 53, 74, 75]), with a weak β-like re-
laxation that persists, remaining at a constant frequency,
as the α relaxation moves to lower frequencies.

The association of the intermediate-time process with
the ideal glass transition line is demonstrated in Fig. 7.
Here, we plot the loss spectra of two trajectories, both
finishing at the same state point in the viscous liquid.
One begins in the glass; the other begins in the liquid very
close to the transition line. The former trajectory shows
a clear ‘β’ process; in the latter, it is completely absent.
The intermediate decay thus emerges as a precursor to
the final relaxation, present only below Tc.

A similar connection between the ideal SMCT glass
transition and a qualitative change in dynamics (often
involving the emergence of an intermediate-time relax-
ation) has been made many times in the experimental
and simulation literature [4, 9, 27, 28, 30, 31, 33]. How-
ever, we must state that the relation between experimen-
tal variables (density and temperature) and the trajec-
tories chosen within our model – particularly the values
of the couplings in the final state – remains unclear. We
might associate increasing coupling with increasing den-
sity and decreasing temperature, but it is not obvious
how to be more precise than this.

The fact that our intermediate-time process arises from
the crossing of the ideal glass line implies that this re-
laxation should be present for all trajectories finishing
on the liquid side of the line, including those that end
only just within the liquid, so that the subsequent α
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FIG. 7: Spectra showing the sudden appearance of the
intermediate-frequency relaxation as the starting point of the
trajectory is moved to the glass side of the glass transition
line. The mode-coupling transition can thus be associated
with a qualitative change in the dynamics of the system.
vi
1 = vf

1
= 0.5, vf

2
= 2.864 and τI = 106. vi

2 = 2.914 (full
line) and vi

2 = 2.864 (dotted line). For this v1, the glass
transition occurs at v2 ≈ 2.91421.

decay is pushed out to unobservably long times. This
type of model has interesting properties which we now
discuss, although these become increasingly remote from
the original conception of the instanton-mediated cutoff.
Specifically, we are now talking about a model where the
instanton relaxation only just manages to carry the pa-
rameters into the fluid phase, such that the resulting α
relaxation remains much slower than the instanton time
itself. This behavior could perhaps arise at temperatures
well below Tc, but if so, decreasing temperature further
should create a trajectory where even the final state lies
within the ideal glass. This would cause not only the final
divergence of the α relaxation time (which could be too
long to measure far before that) but also the divergence
of the β-like relaxation time.

Until this point is reached, however, the β-like relax-
ation arising from the instanton cutoff mechanism should
persist at all temperatures below the mode-coupling tran-
sition, even when the system is arrested (no visible α de-
cay) on experimental timescales. To demonstrate this,
we plot (in fig. 8) the loss spectrum for three trajectories
ending very close to the glass transition line on the liq-
uid side. The intermediate peak persists even when the
α peak occurs at frequencies twelve orders of magnitude
lower.

As in the case of the earlier trajectories with vf
1

= 0,
the qualitative form of our results is largely determined
by the couplings in the final state of the system, provided
the trajectory begins in the glass phase. However, there
are a number of differences between the two classes of
trajectory in the way the various adjustable parameters
affect the relaxation.

Firstly, the role of the decay time τI can be different
in the shorter trajectories. Figure 8 demonstrates this:
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FIG. 8: Spectra showing the persistence of the intermediate-
frequency process as the final decay is moved to very low
frequencies. vi

1 = vf
1

= 0.5, vi
2 = 2.9242 and τI = 106. vf

2
is

moved very close to the transition line: the values used are
2.9142, 2.91421 and 2.914213.

here, τI sets the intermediate relaxation time, but the
difference between this time and that of the α relaxation
is determined by the distance between the finishing point
and the glass transition line. This is in contrast with the

vf
1

= 0 case, where the influence of the transition region
is much weaker and the only way of significantly changing
the timescale of the final relaxation on the glassy side of
the ideal transition is through adjustment of τI .

The second point concerns the crossover function
f(t/τI). As discussed earlier, this strongly affects the
relaxation at times ∼ τI : the timescale (by construction)
of our intermediate-time process. This is demonstrated
in Fig. 9: the use of a slower crossover function (here,
a power law ∝ 1/(1 + t/τI)) broadens the intermediate
peak. A theory of f(t/τI) would be necessary in order
to make detailed comparisons of a cut-off model with
experimental data: at present, our rather narrow and
asymmetric peaks are far from the broad and (usually)
symmetric features seen in experiment.

We note that it is possible to obtain qualitatively sim-
ilar relaxation patterns (weak intermediate process fol-
lowed by stronger α decay) regardless of the angle of ap-
proach to the glass transition line, even if the strength of
the linear, rather than the quadratic coupling is reduced.
Although this moves even further away from our origi-
nal theoretical motivation, it reinforces the view that the
intermediate-time process is broadly insensitive to the
details of the trajectory.

Finally, mindful of the fact that we have focused in
this section exclusively on trajectories finishing close to
the type B transition, we examine briefly the behav-
ior as the final quadratic coupling is reduced back to-
wards zero. Figure 10 shows a series of decays with
starting point (vi

1
= 0, vi

2
= 4.01), τI = 108 and end-

points along a diagonal line running across liquid re-
gion of the phase diagram from (v1 = 0, v2 = 4) to
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FIG. 9: Sections of spectra for exponential (full line, narrower
peak) and power-law (dotted line, broader peak) crossover

functions f(t/τI). In both cases, vi
1 = vf

1
= 0.5, vi

2 =

2.92421355, vf
2

= 2.9142, and τI = 108. These trajectories
are chosen to give a well-separated intermediate-frequency
process, and so finish very close to the glass transition line.

(v1 = 1, v2 = 0). The endpoints shown are (0.0025, 3.99)
(lowest curve), (0.1125, 3.5), (0.5, 2) and (0.9, 0) (high-
est curve). Although the (0.0025, 3.99) trajectory shows
a marked β-like process, such a relaxation is completely
absent from the (0.1125, 3.5) trajectory, which (despite
finishing rather close to the type B transition) gives a
straight line in the logarithmic plot corresponding to a
slightly stretched exponential decay. The appearance of
the intermediate-time process thus requires the trajec-
tory to finish very close to the type B transition (although
this requirement is less strict for higher initial coupling
constants e.g. vi

2 ≈ 4.2). For the ‘central’ endpoint at
(0.5, 2), the influence of the type A transition is already
noticeable, and the additional slow process at long times
has started to appear. This process is very obvious in the
trajectory finishing at (0.9, 0). We have found no trajec-
tories showing both the final slow process and a β-like
relaxation.

VIII. CONCLUSIONS

We have studied a simple schematic mode-coupling
equation with cutoff, based on the well-studied F12

model but with coupling constants in the memory ker-
nel m(t) that themselves have explicit t-dependence.
The quadratic coefficient in the expression relating the
memory kernel to the density-density correlator gradu-
ally decays, cutting off the ideal glass transition at long
times. This leads to two new decay scenarios, both of
which qualitatively resemble experimental data in differ-
ent regimes.

In the first of these scenarios, the decay of the
quadratic coupling is complete, leaving a purely linear
memory kernel at long times. This is close to the concep-
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FIG. 10: Range of endpoints lying along a diagonal line in
the phase diagram running from (vf

1
= 0, vf

2
= 4) to (vf

1
=

1, vf
2

= 0). In all cases, starting point is (vi
1 = 0, vi

2 = 4.01

and τI = 108. Endpoints shown are (moving upwards) (vf
1

=

0.0025, vf
2

= 3.99), (0.1125, 3.5), (0.5, 2) and (0.9, 0). Dotted
lines show exponential decay.

tion of Cates and Ramaswamy concerning the likely form
of the memory function in the hopping-dominated regime
[18]. For systems that standard MCT would predict to
lie within or close to the ideal glass, but where a long
time α decay is nonetheless observable on experimental
timescales, this can result in decay curves showing an
addition slow relaxation feature at long times. Although
the experimental data is not conclusive, such features are
hinted at in several of the earliest papers on hard-sphere
colloidal glasses [44, 45, 46, 47, 48]. There, they appeared
as an upward deviation between φq(t) and the relaxation
predicted by a SMCT calculation with parameters shifted
somewhat, so as to make the α time scale finite.

In the second scenario, the decay of the quadratic cou-
pling again carries one through the ideal glass transition
line, but saturates at values not far from that line so
that the final α process does indeed resemble the MCT
prediction with shifted parameters. Theoretical moti-
vation for this type of model is less clear, but the re-
sults are intriguing nonetheless. Specifically, a weaker
relaxation process appears at intermediate times, as a
precursor of the final α relaxation. This may be con-
nected with the β relaxation and/or the “excess wing”
seen in many molecular glass-formers (see, for example
Refs. [51, 53, 74, 75]), whose appearance is clearly con-
nected to an underlying ideal mode-coupling glass tran-
sition (cf. Refs. [4, 9, 27, 28, 30, 31, 33]. Our schematic
model predicts the β-like relaxation to persist even as the
final α relaxation time becomes unmeasurably long.

This second scenario requires that significant quadratic
coupling remains within the memory function even as
t → ∞. If this does happen, one might expect the
strength of this coupling to increase as one moves fur-
ther into the glass, just as the initial (t = 0) quadratic
coupling does (unless there is a balancing compensation
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in the strength of the decay). The result would be that
at some low enough temperature the α relaxation time
actually diverges; if so, that of the β-like process does
also. This is because the intermediate timescale corre-
sponds to that on which the parameter decay takes the
system across the ideal glass transition, and a divergent
α relaxation time signifies that this line is never crossed.

Although the case for residual quadratic coupling
within the schematic model remains somewhat unclear,
several arguments in favour were presented in Sections
6 and VII B. An additional, speculative idea is that
a stronger residual coupling would result from stronger
static correlations in the system, perhaps due to inter-
molecular attractions (e.g. hydrogen bonding), as often
occur in molecular glasses. In that case, one might find
that in hard-sphere glasses, where intermolecular attrac-
tion is absent, the reduction of quadratic coupling be-
comes the slowest process in the system, and determines
its long-time behavior (scenario 1 above). In the molec-
ular glasses, where attraction and bonding may enhance
arrest, it is only the second slowest, and manifests itself
as an intermediate relaxation (scenario 2).

The cut-off procedure studied here applies regardless of
the microscopic dynamics of the system (see discussions
in Refs. [13, 76]). In particular, we have introduced no
coupling to density currents [14, 19], which are present
in Newtonian but not Brownian systems. In fact, the
experimental results on colloidal systems [44, 45] that
suggest an extra decay process at long times (as predicted
by our model) could be taken to indicate the presence
of non-MCT relaxation processes in simple systems with
Brownian dynamics and hard-sphere interactions.

A criticism that might be made of our work is that
the memory kernel of our model now contains an extra
non-microscopic relaxation process introduced by hand
(in contrast to SMCT) and so the fact that we predict
an extra relaxation process in φ(t) is hardly surprising.
However, we believe that our approach has sufficient the-
oretical motivation [18], and captures enough interesting
features of glassy relaxation, for its study to be justified.
We also have no method of calculating the relaxation
time τI , which, for example, precludes a study of the
connection between α and β relaxation times. However,
since τI is connected with the breakdown of MCT, we
do not expect it to be calculable by MCT-like methods;
to whatever extent instanton dynamics (hopping) is ac-
tually involved in the β process, agreement with models
that omit it must be fortuitous.

Our model also has several limitations inherited di-
rectly from the F12 model: these restrictions in plateau
height, in the form of the α decay, and in the connections
between the two. The form of the F12 phase diagram
(Fig. 1) is also rather specific to this model [17]. However,
we believe that the broad features of our results should
be independent of the details of Fig. 1. The appearance
of the ‘slower-than-α’ process in our first relaxation sce-
nario depends only on the presence of significant linear
correlations at long times, not on the form of the path

taken across the phase diagram. As discussed towards
the end of Section VII, the intermediate process is pro-
duced whenever the system crosses the type B transition
line and remains sufficiently close to it, regardless of the
details of the trajectory.

Given the sensitivity of the predicted intermediate-
time relaxation to the crossover function f(t/τI), the-
oretical work on the likely form of this would be use-
ful. This might allow connections to be made between
our approach and facilitated dynamics models [10, 12],
which provide information on the behavior of strongly
and weakly correlated regions as a system relaxes.

Nonetheless, the lack of microscopic detail in our model
might be seen as an advantage. For instance, it provides
a simple mechanism by which a single generic correlator
can acquire an intermediate-time relaxation (triggered
by the ideal MCT transition and persisting even if the
system is arrested on experimental timescales), without
appealing to any detailed properties of the material or a
coupling to a probing variable. This is intriguing given re-
cent experimental results [77] suggesting an intermediate-
time process in a metallic glass. These experiments are
not based on scattering or dielectric loss, but instead in-
volve mechanical measurements of the shear modulus.
Furthermore, the atoms of these materials (at least with
respect to their slow dynamics at high densities) are ex-
pected to behave as spheres with almost purely metallic
interactions [77]. Since our model predicts a separate
intermediate-time process in the main φ(t), rather than
in a second probing correlator [38, 39], it also implies that
intermediate-time decay should be observable in simu-
lations, where φ(t) is measured directly. However, re-
solving an intermediate-time process in simulations may
prove technically difficult: these decays are often small
in amplitude and the intermediate-time regime may be
affected by oscillations caused by the short-time dynam-
ics (although this might be avoided by the use of over-
damped dynamics) or the finite size of the simulation box
[78].

More generally, we believe that the wide range of relax-
ation scenarios predicted by our model motivates contin-
ued investigations along these lines. Given that SMCT
two-correlator approaches concentrate only on tempera-
tures above Tc [38, 41], a possible future direction would
be to add an extra correlator to our model and attempt
to fit data at lower temperatures. This might provide, for
instance, a mechanism by which both wing and peak fea-
tures may be produced in the same spectrum, as seen in
the experiments of Refs [50] and [55]. Although far more
complicated to implement, an extension of the same ap-
proach to address non-schematic, wavevector-dependent
description would also be highly desirable.
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haaf, A. Moussäıd, P. N. Pusey, A. B. Schofield, M. E.
Cates, M. Fuchs, and W. C. K. Poon, Science 296, 104
(2002).

[27] J. Wiedersich, N. V. Surovtsev, and E. Rössler, J. Chem.
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