179 research outputs found

    Three-body correlations in direct reactions: Example of 6^{6}Be populated in (p,n)(p,n) reaction

    Get PDF
    The 6^{6}Be continuum states were populated in the charge-exchange reaction 1^1H(6^{6}Li,6^{6}Be)nn collecting very high statistics data (5×106\sim 5 \times 10^6 events) on the three-body α\alpha+pp+pp correlations. The 6^{6}Be excitation energy region below 3\sim 3 MeV is considered, where the data are dominated by contributions from the 0+0^+ and 2+2^+ states. It is demonstrated how the high-statistics few-body correlation data can be used to extract detailed information on the reaction mechanism. Such a derivation is based on the fact that highly spin-aligned states are typically populated in the direct reactions.Comment: submitted to Physical Review

    New insight into the low-energy 9^9He spectrum

    Get PDF
    The spectrum of 9^9He was studied by means of the 8^8He(dd,pp)9^9He reaction at a lab energy of 25 MeV/n and small center of mass (c.m.) angles. Energy and angular correlations were obtained for the 9^9He decay products by complete kinematical reconstruction. The data do not show narrow states at \sim 1.3 and \sim 2.4 MeV reported before for 9^9He. The lowest resonant state of 9^9He is found at about 2 MeV with a width of \sim 2 MeV and is identified as 1/21/2^-. The observed angular correlation pattern is uniquely explained by the interference of the 1/21/2^- resonance with a virtual state 1/2+1/2^+ (limit on the scattering length is obtained as a>20a > -20 fm), and with the 5/2+5/2^+ resonance at energy 4.2\geq 4.2 MeV.Comment: 5 pages, 4 figures, 2 table

    Cannibalism as a life boat mechanism

    Get PDF
    Under certain conditions a cannibalistic population can survive when food for the adults is too scarce to support a non-cannibalistic population. Cannibalism can have this lifeboat effect if (i) the juveniles feed on a resource inaccessible to the adults; and (ii) the adults are cannibalistic and thus incorporate indirectly the inaccessible resource. Using a simple model we conclude that the mechanism works when, at low population densities, the average yield, in terms of new offspring, due to the energy provided by one cannibalized juvenile is larger than one

    10He low-lying states structure uncovered by correlations

    Full text link
    The 0+ ground state of the 10He nucleus produced in the 3H(8He,p)10He reaction was found at about 2.1±0.22.1\pm0.2 MeV (\Gamma ~ 2 MeV) above the three-body 8He+n+n breakup threshold. Angular correlations observed for 10He decay products show prominent interference patterns allowing to draw conclusions about the structure of low-energy excited states. We interpret the observed correlations as a coherent superposition of the broad 1- state having a maximum at energy 4-6 MeV and the 2+ state above 6 MeV, setting both on top of the 0+ state "tail". This anomalous level ordering indicates that the breakdown of the N=8 shell known in 12Be thus extends also to the 10He system.Comment: 5 pages, 5 figure

    Detector array for the 7^7H nucleus multi-neutron decay study

    Full text link
    Setup fitting the requirements for the detailed study of the five-body decay of the 7H nucleus obtained as a result of the proton transfer from the 8He projectiles to the deuterium target nuclei is being built at the radioactive beam line of ACCULINNA-2 separator in the G.N. Flerov Laboratory of Nuclear Reactions. Described here is the assembly of 100 BC-404 plastic scintillators, intended for neutron detection, the annular Si detector telescope for the 3He recoils, and the detector array providing the ΔE\Delta E-EE-TOF registration of 3H nuclei emitted at the 7H decay. Results obtained by the Monte Carlo simulations made for the energy values and flight passes of all these particles are given together with the luminosity expected for the discussed experiments

    Search for 2p Decay of the First Excited State of 17 Ne

    Get PDF
    Structure of nuclei located near and beyond the drip-lines plays important role in the explosive astrophysical processes. The problem of two-proton decay of the 17Ne first excited state is a good example of such situation. The two-proton radiative capture is a possible bypass of the 15O waiting point in the rp-process. The rate of this process drastically depends on the value of the weak

    Study of Proton and Deuteron Pickup Reactions 2H(10Be,3He)9Li an 2H(10Be,4He)8Li with 44 A MeV 10Be Radioactive Beam at ACCULINNA-2 Fragment Separator

    Full text link
    The proton and deuteron pickup reactions 2H(10Be,3He)9Li and\\ 2H(10Be,4He)8Li radioactive beam produced by the new fragment separator ACCULINNA-2 at FLNR, JINR\@. These measurements were initially motivated as test reactions intended for the elucidation of results obtained in the study of the extremely neutron-rich 7H and 6H systems created in the 2H(10Be,3He)9Li and 2H(10Be,4He)8Li reactions using the same setup. In the 2H(10Be,3He)9Li reaction the 9Li ground-state (3/23/2^-) and its first excited state (2.69~MeV, 1/21/2^-) were identified in the low-energy region of its excitation spectrum. The differential cross sections for the 9Li g.~s.) population were extracted at forward center-of-mass angles (3133^\circ-13^\circ) and compared with the FRESCO calculations. Spectroscopic factor of 1.7\sim 1.7, derived by a model for the 10Be=p+ = p +9Li(g.s.) clustering was found in accord with the experimental data. The energy spectrum of 8Li populated in the 2H(10Be,4He)8Li reaction shows the strong peak which corresponds to excitation of the second excited state of 8Li (2.25 MeV, 3+3^+). The fact that the ground and the first excited states of 8Li were not observed is fully consistent with Shell-Model calculations carried out for the 10Be g.\,s. and 8Li level structure applying momentum selection rules

    The 6^{6}H states studied in the d(8He,α)d(^8\text{He},\alpha) reaction and evidence of extremely correlated character of the 5^{5}H ground state

    Full text link
    The extremely neutron-rich system 6^{6}H was studied in the direct 2H(8He,4He)6^2\text{H}(^8\text{He},{^4\text{He}})^{6}H transfer reaction with a 26 AA MeV secondary 8^{8}He beam. The measured missing mass spectrum shows a resonant state in 6^{6}H at 6.8(3)6.8(3) MeV relative to the 3^3H+3n3n threshold. The population cross section of the presumably pp-wave states in the energy range from 4 to 8 MeV is dσ/dΩc.m.190(40)d\sigma/d\Omega_{\text{c.m.}} \simeq 190(40) μ\mub/sr in the angular range 5<θc.m.<165^{\circ}<\theta_{\text{c.m.}}<16^{\circ}. The obtained missing mass spectrum is free of the 6^{6}H events below 3.5 MeV (dσ/dΩc.m.3d\sigma/d\Omega_{\text{c.m.}} \lesssim 3 μ\mub/sr in the same angular range). The steep rise of the 6^{6}H missing mass spectrum at 3 MeV allows to show that 4.5(3)4.5(3) MeV is the lower limit for the possible resonant state energy in 6^{6}H tolerated by our data. According to paring energy estimates, such a 4.5(3)4.5(3) MeV resonance is a realistic candidate for the 6^{6}H ground state (g.s.). The obtained results confirm that the decay mechanism of the 7^{7}H g.s.\ (located at 2.2 MeV above the 3^{3}H+4n4n threshold) is the ``true'' (or simultaneous) 4n4n emission. The resonance energy profiles and the momentum distributions of the sequential 6^{6}H \,\rightarrow \, ^5H(g.s.)+n\, \rightarrow \, ^3H+3n3n decay fragments were analyzed by the theoretically-updated direct four-body-decay and sequential-emission mechanisms. The measured momentum distributions of the 3^{3}H fragments in the 6^{6}H rest frame indicate very strong ``dineutron-type'' correlations in the 5^{5}H ground state decay.Comment: 9 pages, 11 figure
    corecore