40,269 research outputs found

    LArGe: Background suppression using liquid argon (LAr) scintillation for 0νββ\nu\beta\beta decay search with enriched germanium (Ge) detectors

    Full text link
    Measurements with a bare p-type high purity germanium diode (HPGe) submerged in a 19 kg liquid argon (LAr) scintillation detector at MPIK Heidelberg are reported. The liquid argon--germanium system (LArGe) is operated as a 4π\pi anti-Compton spectrometer to suppress backgrounds in the HPGe. This R&D is carried out in the framework of the GERDA experiment which searches for 0νββ\nu\beta\beta decays with HPGe detectors enriched in 76^{76}Ge. The goal of this work is to develop a novel method to discriminate backgrounds in 0νββ\nu\beta\beta search which would ultimately allow to investigate the effective neutrino mass free of background events down to the inverse mass hierarchy scale. Other applications in low-background counting are expected.Comment: 3 pages, 6 figures, conference proceedings of the 10th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD06) 1 - 5 October 2006 Siena, Ital

    Experimental realization of a measurement conditional unitary operation at single photon level and application to detector characterization

    Full text link
    Our last experimental results on the realization of a measurement-conditional unitary operation at single photon level are presented. This gate operates by rotating by 90o90^o the polarization of a photon produced by means of Type-II Parametric Down Conversion conditional to a polarization measurement on the correlated photon. We then propose a new scheme for measuring the quantum efficiency of a single photon detection apparatus by using this set-up. We present experimental results obtained with this scheme compared with {\it traditional} biphoton calibration. Our results show the interesting potentiality of the suggested scheme.Comment: to appear in Proc. of SPIE meeting, Denver august 200

    A Simple UV-Completion of QED in 5D

    Full text link
    We construct a Lifshitz-like version of five-dimensional (5D) QED which is UV - completed and reduces at low energies to ordinary 5D QED. The UV quantum behaviour of this theory is very smooth. In particular, the gauge coupling constant is finite at all energy scales and at all orders in perturbation theory. We study the IR properties of this theory, when compactified on a circle, and compare the one-loop energy dependence of the coupling in the Lifshitz theory with that coming from the standard 5D QED effective field theory. The range of validity of the 5D effective field theory is found to agree with the more conservative version of Naive Dimensional Analysis.Comment: 24 pages, 7 figures; v2: Minor improvements, matches journal versio

    Establishing the nature of companion candidates to X-ray emitting late B-type stars

    Full text link
    The most favored interpretation for the detection of X-ray emission from late B-type stars is that these stars have a yet undiscovered late-type companion (or an unbound nearby late-type star) that produces the X-rays. Several faint IR objects at (sub)-arcsecond separation from B-type stars have been uncovered in our earlier adaptive optics imaging observations, and some of them have been followed up with the high spatial resolution of the Chandra X-ray observatory, pinpointing the X-ray emitter. However, firm conclusions on their nature requires a search for spectroscopic signatures of youth. Here we report on our recent ISAAC observations carried out in low resolution spectroscopic mode. Equivalent widths have been used to obtain information on spectral types of the companions. All eight X-ray emitting systems with late B-type primaries studied contain dwarf like companions with spectral types later than A7. The only system in the sample where the companion turns out to be of early spectral type is not an X-ray source. These results are consistent with the assumption that the observed X-ray emission from late B-type stars is produced by an active pre-main sequence companion star.Comment: 6 pages, 2 figures, 3 tables, accepted for publication in MNRA

    Critical behavior in ultra-strong-coupled oscillators

    Full text link
    We investigate the strong coupling regime of a linear xx-xx coupled harmonic oscillator system, by performing a direct diagonalization of the hamiltonian. It is shown that the xx-xx coupled hamiltonian can be equivalently described by a Mach-Zehnder-type interferometer with a quadratic unitary operation in each of its arms. We show a sharp transition of the unitary operation from an elliptical phase rotator to an elliptical squeezer as the coupling gets stronger, which leads to the continuous generation of entanglement, even for a significantly thermal state, in the ultra-strong coupled regime. It is also shown that this critical regime cannot be achieved by a classical Hookian coupling. Finally, the effect of a finite-temperature environment is analyzed, showing that entanglement can still be generated from a thermal state in the ultra-strong coupled regime, but is destroyed rapidly

    Progressive Transient Photon Beams

    Get PDF
    In this work we introduce a novel algorithm for transient rendering in participating media. Our method is consistent, robust, and is able to generate animations of time-resolved light transport featuring complex caustic light paths in media. We base our method on the observation that the spatial continuity provides an increased coverage of the temporal domain, and generalize photon beams to transient-state. We extend the beam steady-state radiance estimates to include the temporal domain. Then, we develop a progressive version of spatio-temporal density estimations, that converges to the correct solution with finite memory requirements by iteratively averaging several realizations of independent renders with a progressively reduced kernel bandwidth. We derive the optimal convergence rates accounting for space and time kernels, and demonstrate our method against previous consistent transient rendering methods for participating media
    corecore