2,402 research outputs found

    HeII Recombination Lines From the First Luminous Objects

    Get PDF
    The hardness of the ionizing continuum from the first sources of UV radiation plays a crucial role in the reionization of the intergalactic medium (IGM). While usual stellar populations have soft spectra, mini-quasars or metal-free stars with high effective temperatures may emit hard photons, capable of doubly ionizing helium and increasing the IGM temperature. Absorption within the source and in the intervening IGM will render the ionizing continuum of high-redshift sources inaccessible to direct observation. Here we show that HeII recombination lines from the first luminous objects are potentially detectable by the Next Generation Space Telescope. Together with measurements of the hydrogen Balmer alpha emission line, this detection can be used to infer the ratio of HeII to HI ionizing photons. A measurement of this ratio would shed light on the nature and emission mechanism of the first luminous sources, with important astrophysical consequences for the reheating and reionization of the IGM.Comment: ApJ published version. Due to an error in one of the references, the strength of the 1640 A line was underestimated in a previous version; this line is now brighter by a factor of 1

    s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars

    Full text link
    We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20,25, and 30 Msun. We update our previous results of s-process nucleosynthesis during the core He-burning of these stars and then focus on an analysis of the s-process under the physical conditions encountered during the shell-carbon burning. We show that the recent compilation of the Ne22(alpha,n)Mg25 rate leads to a remarkable reduction of the efficiency of the s-process during core He-burning. In particular, this rate leads to the lowest overproduction factor of Kr80 found to date during core He-burning in massive stars. The s-process yields resulting from shell carbon burning turn out to be very sensitive to the structural evolution of the carbon shell. This structure is influenced by the mass fraction of C12 attained at the end of core helium burning, which in turn is mainly determined by the C12(alpha,gamma)O16 reaction. The still present uncertainty in the rate for this reaction implies that the s-process in massive stars is also subject to this uncertainty. We identify some isotopes like Zn70 and Rb87 as the signatures of the s-process during shell carbon burning in massive stars. In determining the relative contribution of our s-only stellar yields to the solar abundances, we find it is important to take into account the neutron exposure of shell carbon burning. When we analyze our yields with a Salpeter Initial Mass Function, we find that massive stars contribute at least 40% to s-only nuclei with mass A 90, massive stars contribute on average ~7%, except for Gd152, Os187, and Hg198 which are ~14%, \~13%, and ~11%, respectively.Comment: 52 pages, 16 figures, accepted for publication in Ap

    Interaction of CO molecules with (Cu , Ag and Au) deposited on regular and defective MgO and BaO(001) surfaces: Density functional calculations

    Get PDF
    The adsorption properties and characteristics of CO on Cu, Ag and Au atoms deposited on various sites of the alkaline earth oxide MgO and BaO. The three members of morphological irregularities, terrace, edge, and oxygen terminated corner of MgO and BaO (001) surface have been studied by means of density functional calculations and embedded cluster model. The examined clusters were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. The  adsorption  properties  of  CO  have  been  analyzed  with reference  to  the  nature  of  the  oxide  support,  pairwise  and  non-pairwise  ..........Please read the full paper

    Evolution of Massive Stars Up to the End of Central Oxygen Burning

    Full text link
    We present a detailed study of the evolution of massive stars of masses 15, 20, 25 and 30 \msun assuming solar-like initial chemical composition. The stellar sequences were evolved through the advanced burning phases up to the end of core oxygen burning. We present a careful analysis of the physical characteristics of the stellar models. In particular, we investigate the effect of the still unsettled reaction 12^{12}C(α\alpha,γ\gamma)16^{16}O on the advanced evolution by using recent compilations of this rate. We find that this rate has a significant impact on the evolution not only during the core helium burning phase, but also during the late burning phases, especially the shell carbon-burning. We have also considered the effect of different treatment of convective instability based on the Ledoux criterion in regions of varying molecular weight gradient during the hydrogen and helium burning phases. We compare our results with other investigations whenever available. Finally, our present study constitutes the basis of analyzing the nucleosynthesis processes in massive stars. In particular we will present a detail analysis of the {\it s}-process in a forthcoming paper.Comment: 46 pages, 15 figures. To be published in ApJ vol 611, August 10, 200

    Unmasking the interplay between mTOR and Nox4: novel insights into the mechanism connecting diabetes and cancer

    Get PDF
    Cancer was recently annexed to diabetic complications. Furthermore, recent studies suggest that cancer can increase the risk of diabetes. Consequently, diabetes and cancer share many risk factors, but the cellular and molecular pathways correlating diabetes and colon and rectal cancer (CRC) remain far from understood. In this study, we assess the effect of hyperglycemia on cancer cell aggressiveness in human colon epithelial adenocarcinoma cells in vitro and in an experimental animal model of CRC. Our results show that Nox (NADPH oxidase enzyme) 4-induced reactive oxygen species (ROS) production is deregulated in both diabetes and CRC. This is paralleled by inactivation of the AMPK and activation of the mammalian target of rapamycin (mTOR) C1 signaling pathways, resulting in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) accumulation, induction of DNA damage, and exacerbation of cancer cell aggressiveness, thus contributing to the genomic instability and predisposition to increased tumorigenesis in the diabetic milieu. Pharmacologic activation of AMPK, inhibition of mTORC1, or blockade of Nox4 reduce ROS production, restore the homeostatic signaling of 8-oxoguanine DNA glycosylase/8-oxodG, and lessen the progression of CRC malignancy in a diabetic milieu. Taken together, our results identify the AMPK/mTORC1/Nox4 signaling axis as a molecular switch correlating diabetes and CRC. Modulating this pathway may be a strategic target of therapeutic potential aimed at reversing or slowing the progression of CRC in patients with or without diabetes.-Mroueh, F. M., Noureldein, M., Zeidan, Y. H., Boutary, S., Irani, S. A. M., Eid, S., Haddad, M., Barakat, R., Harb, F., Costantine, J., Kanj, R., Sauleau, E.-A., Ouhtit, A., Azar, S. T., Eid, A. H., Eid, A. A. Unmasking the interplay between mTOR and Nox4: novel insights into the mechanism connecting diabetes and cancer.Scopu

    Anti-hypertensive Herbs and their Mechanisms of Action: Part I

    Get PDF
    The use of herbal therapies for treatment and management of cardiovascular diseases (CVDs) is increasing. Plants contain a bounty of phytochemicals that have proven to be protective by reducing the risk of various ailments and diseases. Indeed, accumulating literature provides the scientific evidence and hence reason d'etre for the application of herbal therapy in relation to CVDs. Slowly, but absolutely, herbal remedies are being entrenched into evidence-based medical practice. This is partly due to the supporting clinical trials and epidemiological studies. The rationale for this expanding interest and use of plant based treatments being that a significant proportion of hypertensive patients do not respond to Modern therapeutic medication. Other elements to this equation are the cost of medication, side-effects, accessibility, and availability of drugs. Therefore, we believe it is pertinent to review the literature on the beneficial effects of herbs and their isolated compounds as medication for treatment of hypertension, a prevalent risk factor for CVDs. Our search utilized the PubMed and ScienceDirect databases, and the criterion for inclusion was based on the following keywords and phrases: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine (CAM), nitric oxide, vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B, oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with herb in question, and where possible with its constituent molecule(s). In this first of a two-part review, we provide a brief introduction of hypertension, followed by a discussion of the molecular and cellular mechanisms. We then present and discuss the plants that are most commonly used in the treatment and management of hypertension.NPRP# 4-571-3-171 from the Qatar National Research Fund (a member of Qatar Foundation)

    Equation of state for dense supernova matter

    Full text link
    We provide an equation of state for high density supernova matter by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter containing leptons (electrons and neutrinos) under the chemical equilibrium condition. The conditions of charge neutrality and equilibrium under β\beta-decay process lead first to the evaluation of the lepton fractions and afterwards the evaluation of internal energy, pressure, entropy and in total to the equation of state of hot nuclear matter for various isothermal cases. Thermal effects on the properties and equation of state of nuclear matter are evaluated and analyzed in the framework of the proposed effective interaction model. Since supernova matter is characterized by a constant entropy we also present the thermodynamic properties for isentropic case. Special attention is dedicated to the study of the contribution of the components of β\beta-stable nuclear matter to the entropy per particle, a quantity of great interest for the study of structure and collapse of supernova.Comment: 23 pages, 15 figure

    Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet

    Get PDF
    In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles
    corecore