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Abstract
Sand production is one of the major challenges in the oil and gas industry, so a comprehensive geomechanical analysis is 
necessary to mitigate sand production in mature fields. As the pore pressure drastically decline in depleted reservoirs, the 
sand production risk becomes more critical and needs to be studied. However, the absence of key logs in many wells is a 
big challenge in the petroleum industry, and most geologists and engineers use empirical equations to predict missed log 
intervals. We conducted a comprehensive geomechanical modeling study on a full set of logs from two wells from the Hilal 
field, Gulf of Suez, Egypt, to infer the geomechanical elements and predict sand production. We have used the multi-arm 
calipers to calculate the actual depth of damage ratio to validate the geomechanical parameters in the prognosis model and 
confirm the stress orientations. We used machine learning approach to infer key sonic log in X-10 well to replace the empiri-
cal equations. The multi-arm calipers analysis showed an observed anisotropy in the hole diameter size with more enlarge-
ment in the ENE direction and fits with the minimum horizontal stress direction in the direction of N 60oE. The later also 
deduced the maximum horizontal stress direction in N150 ° based on the induced fractures from borehole image data in a 
nearby field. We developed and compared two sand management models: one using empirical equation and the other using 
machine learning. The model driven by the Gardner equation suggests sand production from day one, which is not matched 
with the production data, while the model driven by machine learning suggests no sand production risk, which is matched 
with the actual production data. Our results demonstrate the advantage of using machine learning technique in geomechani-
cal studies on the classical empirical equations in the area of study that can be applied in other basins. The findings of this 
study can help with a better understanding of the implications of machine learning on geomechanical characterization and 
sand management.
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Introduction

Reservoir geomechanical characterization is crucial in 
achieving stable wellbore, perforation direction, stimula-
tion and completion schemes, which greatly impacts res-
ervoir production (Blanton and Olson 1999; Zoback 2007; 
Sen et al. 2019; Taghipour et al. 2019; Baouche et al. 2022; 
Radwan and Sen 2021a, b). The sedimentary basins for 
petroleum accumulations are subjected to in situ stresses 
which are mainly related to their geological tectonic set-
ting. The in situ stress changes under the influence of local 
factors, making its distribution complicated (Yang et al. 
2013; Radwan et al. 2021b). Several drilling and production 
problems, including blowouts, borehole fills, drilling stucks, 
mud losses and sand production, occur if the geomechanical 
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studies are not correctly predicted prior to drilling and pro-
duction operations (Radwan et al. 2019, 2020a; Radwan 
2021b). Therefore, having a mathematical model or empiri-
cal equations to predict the geomechanical parameters is 
necessary for economically vital and successful drilling and 
production operations in oil and gas fields. The resultant 
depletion conditions of mature fields are globally promote 
reservoir geomechanical studies as a critical topic for the 
later stages of field development. The primary challenges are 
faced due to reservoir depletion, necessary repressurization 
by water injection and mitigating sand production to main-
tain production targets as well as cap rock integrity (Addis 
1997a,b; Rahmati et al. 2013; Ranjith et al. 2014; Radwan 
et al. 2021a).

Sand control during production is one of the geomechani-
cal challenges in the oil industry, where some wells suffer 
from sand production problems that affect the production 
strategy and additional repair cost. In addition, sand pro-
duction alongside the formation fluids due to the unconsoli-
dated nature of the formation and production rate is a critical 
industry problem which can plug wells, leading to loss of 
production, erode equipment and settle in surface vessels 
(Suman et al. 1983; Rahmati et al. 2013; Ranjith et al. 2014; 
Javani et al. 2017; Subbiah et al. 2021). To perform geome-
chanical studies related to sand production, it is necessary 
to have the most accurate parameters of the stress state and 
rock mechanical properties accompanied by reservoir and 
rock measurements. Well logs are commonly used to derive 
the in situ stress state at the reservoir level; however, they do 
not provide the most accurate parameters, which affect the 
results of the estimated geomechanical elements and may 
lead to incorrect interpretation (Zoback 2010; Radwan et al. 
2021). Geomechanical studies in many areas worldwide 
are dependent on empirical equations for geomechanical 
parameter estimation, which may work in some places but 
not always (Sarkar et al. 2012; Suorineni 2014a, b; Najibi 
et al. 2015; Iramina 2018). Machine learning techniques 
have been widely used in the oil and gas industry as a pow-
erful tool for prediction of several vital parameters in the 
energy industry (e.g., Vo Thanh et al. 2020; Ashraf et al. 
2020, 2021; Rajabi et al. 2021; Thanh and Lee 2022; Thanh 
et al. 2022; Mustafa et al. 2022; Safaei-Farouji et al. 2022; 
Radwan et al. 2022). Geoscientists and petroleum engineers 
have applied machine learning application on well logs and 
other parameters to infer the most critical geomechanics 
parameters (e.g., Miah 2020; Mohamadian et al. 2021; Kor 
et al. 2021; Radwan et al. 2022). Machine learning tech-
niques have been applied to sand production prediction by 
many authors using reservoir parameters (Khamehchi et al. 
2014; Gharagheizi et al. 2017; Olatunji and Micheal 2017; 
Appalonov et al. 2020; Zamani and Knez 2021; Ngwashi 
et al. 2021). To the best of our knowledge, machine learn-
ing has not been applied to the input parameters of the sand 

management study, especially in light of the lack of key well 
logs prior to this work. In this work, we have applied the 
neural network to better estimate the input parameters of the 
sand management study and to better control the sand man-
agement of the Miocene sandstone reservoirs in the Hilal 
field, Gulf of Suez, Egypt.

The purpose of this study is to perform a comprehensive 
geomechanical characteristics and sand management study 
of the Middle Miocene sandstones of Kareem Formation. 
The sonic logs, which are essential parameters, do not exist 
in one of the wells (X-10 well), so we have used the offset 
well data (X-5 well) to predict the sonic log of the X-10 
well and perform a sand management study using equations 
and machine learning. We apply the two approaches and 
compare the two results to see the difference and how much 
it affects the modeling. In addition, test the application of 
machine learning and its implications for better reservoir 
sand production control in the studied reservoir. First, the 
geological background is explained. Following that, the 
methods used and geomechanical modeling were described 
by the pore pressure and reservoir condition and the orien-
tation and magnitude of the horizontal stress components. 
Later, the wellbore stability model was discussed, followed 
by the two developed sand management models. Finally, 
the implications of machine learning on the geomechanical 
modeling study were discussed.

Geological setting

The Gulf of Suez occupies the northern end of the Red Sea 
rift. The development of this NW–SE-oriented fault-forming 
basin has provided good sites for hydrocarbon generation 
and maturation (Robson 1971; EGPC 1996; Patton et al. 
1994; Radwan et al. 2021a; Dolson et al. 2001). The basin 
is bounded to the east by the Sinai basement hills and to 
the west by the Eastern Desert basement complex (Fig. 1). 
The basin has witnessed extension phases in the Late Oli-
gocene-Early Miocene times (Robson 1971). The basin is 
characterized by normal faults in the NW–SE (Clysmic) and 
SW–NE directions (Patton et al. 1994). Long-lived normal 
faults have been reactivated multiple times during the basin's 
geological evolution through the rotation of fault blocks in 
the basin areas during the rift phases (Patton et al. 1994). 
The basin hosts a cumulative thickness up to 8000 m of 
sedimentary succession (EGPC 1996). Most of the oil and 
gas accumulations in the Gulf of Suez Basin are located in 
the central and southern parts of the basin (Alsharhan, 2003; 
Radwan et al. 2020a, b, c; Radwan 2021a, b, c, 2022). A 
regional lithostratigraphic section is provided in Fig. 1. The 
primary hydrocarbon reservoirs of the Gulf of Suez Basin 
are sandstones dating from the Early Cretaceous to the Mid-
dle Miocene (EGPC 1996).
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Hilal oil field is the area of study and covers an area of 
about five km2, located in the southern area of the basin. The 
field structure is a southwest dipping NW- trending horst of a 
complex, where the Nubia, Nukhul, Upper Rudeis and Kareem 
reservoirs are the main reservoirs in Hilal field (Fig. 1) (Helmy 
1990). The established source rocks, with high total organic 
carbon content (6%), are the Campanian–Maastrichtian and 
Eocene Carbonates (EGPC 1996). The Miocene evaporites 
formed the regional seal for the petroleum system. The tar-
get formations in this study are Kareem Formation, which are 
dominated by sandstone intercalated with shale and anhydrite 
streaks (Fig. 1). The dominant lithology in Hilal field is illus-
trated in Fig. 1c.

Databases and methods

We have used two drilled wells in two different pressure 
regimes and trajectories, namely X-5 and X-10 wells, from 
the Hilal Field. The X-5 well had a full set of wireline logs 
including gamma ray (api), resistivity (ohm), sonic (us/
ft), density (gm/cc), neutron (v/v) and multi-arm calipers 
(inch) (Fig. 2). The X-5 well was drilled during the early 
age of the Hilal field, and the other well, namely X-10, was 
recently drilled. The well logs full set is used to calculate 
the full geomechanical parameters, including the mechani-
cal earth model and the rock strength parameters.

Fig. 1   a Location map of the studied field (modified after Braathen et al. 2018), b map focus on the main fields and structural features of the 
southern Gulf of Suez sub-basin (modified after Omran and El Sharawy, 2014), c stratigraphic units and dominant lithologies in Hilal field
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In situ stress estimation

One of the key steps in a geomechanical model is to deter-
mine the direction of in situ stress. There are several ways 
which are widely used to estimate the three principal 
stresses and rely on field measurements and well log data, 
including the Fullbore Formation MicroImager (FMI) to 
define the magnitude and directions of in situ stress. For 
example, the fast shear slowness direction is the direction 
of maximum horizontal stress, and the azimuth of well-
bore breakout in the FMI figure indicates the direction of 
minimum horizontal stress (Zoback 2007, 2010; Radwan 
et al. 2021b).

The vertical stress (Sv) can be calculated with the inte-
gration of rock bulk density vertically, and the rock bulk 
density (RHOB) is obtained from the well logging data 
(Plumb et al. 1991):

With consideration of the tectonic stress, the maximum 
and minimum horizontal stress of the sedimentary section in 
Hilal field can be calculated as follows (Blanton and Olson 
1999):

where the subscripts SHmax, Shmin and Sv represents maxi-
mum horizontal stress, minimum horizontal stress and 

(1)Sv =

H

∫
0

RHOB(H)*g dH

(2)

Shmin =
�s

1 − �s
(Sv − �PP) + �PP +

Es

1 − �s2
(�x + �s �y)

(3)

SHMax =
�s

1 − �s
(Sv − �PP) + �PP +

Es

1 − �s2
(�s�x + �y)

Fig. 2   Wireline logs of X-5 Well
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vertical stress, respectively. α is Biot’s coefficient (α = Pp is 
the pore pressure in MPa, E is Young’s modulus, v is Pois-
son’s ratio, and �x and �y are tectonic strain.

For the horizontal stresses orientation, we have used the 
available full arm caliper data from the well X-5. We compared 
the results of the caliper with previous results from image logs 
interpretation of Radwan et al. (2021) in the southern Gulf of 
Suez.

Pore pressure

In Eqs. (2) and (3), pore pressure (PP) is another key factor for 
estimating the in situ stress. In the absence of well logs and 
measurements, traditional methods such as Eaton’s and Bow-
ers methods are used for pore pressure estimation. Traditional 
Eaton’s pore pressure estimation method cannot reflect this 
property in some cases or at least delivers overestimated or 
underestimated values. Bowers (1995) proposed an exponen-
tial equation based on the effective stress theory, and both the 
loading and unloading mechanisms can be reflected. In Hilal 
field, the direct pressure measurements of the Upper Rudeis 
and Kareem reservoirs are available, so they have been used 
in this work.

Estimation of mechanical properties and sand 
production model inputs.

Building the mechanical earth model (MEM) and further well-
bore stability requires several parameters, including Young’s 
modulus (E), Biot coefficient and Poisson’s ratio (�) , UCS. 
We have applied the approaches of (Chang et al. 2006; Zhang 
2013; Radwan and Sen 2021a,b; Radwan et al. 2021) to calcu-
late the most important geomechanical parameters as follows:

(4)�d =
Vp2 − 2Vs2

2
(

Vp2 − Vs2
)

(5)Ed = RHOB* Vs2
[

3Vp2 − 4Vs2

Vp2 − Vs2

]

(6)UCS = 1277e−0.036Δt

In the sand management model, we have used the field 
data for the perforation in the studied wells, where the maxi-
mum perforation diameter was 0.3 inch and the perforation 
orientation was in all directions with 60 deg phasing. The 
field regional direction is 150 deg as inferred from image 
logs and caliper data from this research. We have used the 
stress change ratio value of 0.5 and sand grain diameter of 
160 um (Table. 1).

Neural network

A neural network assumes a nonlinear relationship between 
log attributes and is completely defined by the number of 
layers, the neurons in each layer and the connection weights 
(Al-Bulushi et al. 2012; Ashraf et al. 2021). In the present 
research, the probabilistic neural network pattern recogni-
tion (K.mod) of Schlumberger (2020) was used for inferring, 
predicting and modeling reservoir properties specifically the 
sonic log that influence the sand management and the whole 
geomechanical characteristics. K.mod module can predict 
nonrecorded parameters; in other words, it reconstruct miss-
ing or poor quality data in order to compensate for bad log 
response coming from bad hole conditions. It comprises of 
the input layer, hidden pattern layer, summation layer, an 
output layer and connection loops (Fig. 3).

Each node represents an attribute, and each connection rep-
resents a conditional relationship (likelihood) between an indi-
vidual attribute and training data sets. A supervised training 
algorithm was employed for the sonic prediction in which the 
neural network was structured based on the already computed 
well log attribute combinations from the multiregression anal-
ysis. The input parameters in this study were the gamma ray, 
density and resistivity to predict the compressional slowness of 

(7)� = Sin−1
(

Vp − 1000

Vp + 1000

)

(8)TSTR = K*UCS

(9)Es = y1 Edy2

(10)�s = �d ∗ PRmultiplier

Table 1   Sand management 
input parameters

Completion type Perforation Maximum perfora-
tion diameter 0.3 
inch

Maximum horizontal stress direc-
tion

Field regional direction 150 deg

Stress change ratio Default ratio 0.5
Perforation orientation All directions with 60 deg phasing N/A
Sand grain diameter Fit with well site description 160 um
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the Upper Rudeis and Kareem formations. The data are mod-
eled directly from log data via an interactive learning process.

Results and discussions

Reservoir pore pressure and condition

The reservoir section is a depletion drive and suffered from 
severe pressure depletion as it started with a recorded pres-
sure equivalent to 10.8 ppg. According to the latest pressure 
measurements, direct downhole measurements by the MDT 
tool indicate PP equivalent to 3.3 ppg against the reservoir. 
Two different wells were included in the study: One was 
drilled during the early age of the field and the other well, 
namely X-10, was recently drilled in two different pressure 
regimes and in different directions. At the first well X-5 
drilled in 1985, the pore pressure in the Miocene section, 
including the Kareem and upper Rudeis formations, was 
characterized by high virgin pressure, reaching 10.8 ppg, 
which is the normal trend in the Miocene reservoirs charged 
by oil in the Southern Gulf of Suez.

Orientation and magnitude of the horizontal stress 
components

Analyzing image logs is crucial to obtain meaningful infor-
mation about borehole failures, within which breakouts 
emerge as two parallel furrows (failure zones) having a 

180° angle from each other and parallel to Shmin azimuth 
(Barton and Moos 2010). When the borehole image logs 
are not available in all wells, the full arm caliper data can be 
used to infer or verify the direction of horizontal stresses. 
In our case, the unavailable borehole image logs were sub-
stituted with the caliper log to recognize the directions of 
the penetrated horizontal stresses by X-5 well in Hilal field. 
Then, the deduced horizontal stresses of X-5 well by caliper 
log was compared to the previous results of (Radwan et al. 
2021b; Abdelghany et al. 2021) from different wells in the 
same field. A detailed multi-arm calipers analysis showed 
hole washout along the whole reservoir section corrected 
by the used bit size of 12.25’’ (Fig. 4). The analysis showed 
an observed anisotropy in the hole diameter size with more 
enlargement in the ENE direction (Fig. 4) and fits with the 
minimum horizontal stress direction in the direction of N 
60°E of Radwan et al. (2021b). The later also deduced the 
maximum horizontal stress direction in N150° based on 
the induced fractures from borehole image data in a nearby 
Ashrafi field. The various geomechanical parameters in the 
studied wells are listed in Table 2. 

Wellbore stability model of the Miocene reservoirs

We have performed full wellbore stability model for the 
reservoir section of the X-5 well in order to validate our 
mechanical earth model, rock strength parameters and 
the poroelastic horizontal strain model parameters. The 

Fig. 3   log data used for machine learning
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Fig. 4   A image logs from 
nearby wells in the field after 
Radwan et al. (2021b), b well 
X-5 multi-arm calipers section 
view shows enlargement direc-
tion
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model results showed the different mud weights to control 
the wellbore hole versus the shale breakout in 4 outputs: 
shear failure mud weight, 5% dod, 10% dod and 20% dod 
(Fig. 5). Based on the parameters used in the model, the 
used mud weight while drilling the well was in the range 
between 5 and 10% dod, which fits with the calculated 
dod from the calipers versus the bit size (Table 2).

Sand management control of the X‑5 well

The poroelastic horizontal strain method is used to calculate 
the minimum and maximum horizontal stresses magnitudes 
using tectonic strain component values of 0.005 and 0.007, 
respectively, as published for the Hilal field (Abdelghany 
et al. 2021; Radwan et al. 2021b). Although the borehole 

Table 2   Geomechanical characteristics (range values) in X-5 well and X-10 using the gardener and machine learning outputs

Well Compressional 
slowness

UCS Poisson ratio Azimuth Deviation Pore pressure Shmin SHmax

Us/ft psi unitless deg deg ppg ppg ppg
X-5 64 –110 2900 –13,000 0.2 –0.33 350 15 –20 10.8 14.2 –15.1 14.5 

–15.2
X-10 Gardner 

outputs
57 –120 2300 –15,000 0.16 –0.34 224 –267 20 –21 3.3 9.2 –12.2 10 –12.3

X-10 Machine 
Learning 
outputs

65 –110 2700 –11,000 0.21 –0.36 224 –267 20 –21 3.3 9.3 –12.2 9.8 –12.3

Fig. 5   Wellbore stability results for the well X-5
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showed an anisotropic hole, the difference between the two 
caliper readings (Fig. 3) is low, which is reflected in the 
difference between the two tectonic stress components and, 
consequently, the deduced maximum and minimum hori-
zontal stress values. Moreover, these values were validated 
using the resultant depth of damage versus the actual break-
out ratio from calipers.

To investigate the sand production risk under the virgin 
pressure and through the well X-5 profile, a full sand man-
agement study was conducted using the same MEM that was 
validated in the previous wellbore stability analysis (Fig. 5). 
The McNally equation is used to calculate the UCS values 
in the sandstone, which is totally different than the equation 
used for shale calculations.

Sand management study results for well X-5 (virgin pres-
sure case) showed no estimated sand failure along the whole 
reservoir section and used different critical drawdown pres-
sures, which were plotted as 0%, 15%, 25%, 35%, 50% and 
90% critical drawdown pressure (Fig. 6). The single depth 
sand management study for the Kareem section showed 
a green flag till zero pore pressure as an indication of the 
impossibility of sand production along this well using the 
current parameters (Fig. 7).

Sand management study results for well X-5 (virgin pres-
sure case) showed no estimated sand failure along the whole 
reservoir section and used different critical drawdown pres-
sures, which were plotted as 0%, 15%, 25%, 35%, 50% and 

90% critical drawdown pressure (Fig. 6). The single depth sand 
management study for the Kareem section showed a green flag 
till zero pore pressure as an indication of the impossibility of 
sand production along this well using the current parameters 
(Fig. 7).

Sand management control of the X‑10 well 
and Neural network application

On the other hand, the X-10 well was drilled recently in 2015 
with a recorded depleted pressure of 3.3 ppg, which increases 
the sand production risk, which badly needed to be studied, 
especially with production. One of the major uncertainties 
while studying the well was the absence of the sonic log, which 
is used in the entire MEM and the rock strength calculations.

To overcome this risk and to minimize the uncertainty, 
a machine learning model was used to predict the sonic log 
using the offset wells data. Three different types of logs, 
including gamma ray, density and resistivity, are used to build 
the model and to estimate the missed log in the well (Fig. 8). 
The Gardner equation (Eq. 11) is mainly used to predict the 
compressional slowness of logs using density data with some 
limitations (Gardner et al. 1997).

(11)� = 0.23Vp0.25

Fig. 6   Sand management study results for well X-5 using virgin pressure
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Fig. 7   Single depth sand management results for well X-5 in Kareem formation

Fig. 8   DT values comparison between machine learning (DT_ML) and the Gardner empirical equation (DT_Gardner)
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where � is bulk density in g/cc and Vp is P-wave velocity 
in ft/s.

In this work, we have applied both the Gardner method in 
the X-10 well and the machine learning technique to make 
a correlation between its outputs and the machine learning 
outputs to display how much it would affect the final model, 
while in terms of neural networks and machine learning, we 
have applied the K.mod technique.

Implications of machine learning 
on the geomechanical modeling study

A comparison between the two models showed extremely 
different values estimated for compressional slowness. 
Machine learning results showed lower slowness values in 
sandy intervals and showed higher slowness values in shale 
intervals (Fig. 9). As a result of using the compressional 
slowness inputs for mechanical earth modeling and rock 
strength calculations, the resulted parameters showed a tre-
mendous difference between the two models. Machine learn-
ing outputs showed higher unconfined compressive strength 
(UCS_ML), static Young’s modulus (YME_STA_ML) and 

lower Poisson ratio (PR_STA_ML) than the other models 
(Fig. 10).  

In order to highlight the impact of the machine learning 
outputs and their difference with empirical equation outputs, 
two sand management studies were conducted using two 
different approaches.

The study built using the empirical equation outputs 
(Gardner equation) showed sand failure along different sec-
tions in the Kareem formation using the depleted pressure 
that was recorded during the well drilling process. The failed 
intervals have the lowest UCS and the highest Poisson ratio 
(Fig. 10). Single depth sand management through one of the 
weak intervals in the Kareem formation shows sand failure 
from day one production as shown in Fig. 11.

The study built using the machine learning outputs 
showed no sand failure along the whole reservoir sand sec-
tion using the depleted pressure that was recorded during the 
well drilling process (Fig. 12). A single depth sand manage-
ment study for the Kareem section revealed a green flag until 
zero pore pressure, indicating that sand production along this 
well is impossible with the current parameters, as shown in 
(Fig. 13).  

Fig. 9   MEM and UCS values correlation between the two models
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Fig. 10   Sand management study results for well X-10 using empirical equation method

Fig. 11   Single depth sand management for a weak failed zone in Kareem Formation
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We can infer that applying the empirical equation in the 
absence of key well logs such as the sonic can lead to errors 
in the sand management model. According to the production 
data from the Hilal field, it is demonstrated that there is no 
sand production in the field. The model driven by the Gard-
ner equation suggests sand production from day one. The 
machine learning approach is more realistic and provides 
results that match with the production data, where the model 
expects no sand production in the X-10 well. Compared to 
the empirical equations, the machine learning technique 
shows better performance.

Conclusions

•	 The X-10 well sand management study proceeded on 
to demonstrate the variation in horizontal stress values 
along the well caused by different well deviation and azi-
muth.

•	 Using the empirical equation method results provides 
an overestimation of the rock strength in shale intervals 
while underestimating the rock strength in sand intervals.

•	 The model driven by the Gardner equation suggests sand 
production from day one, which is not matched with the 
production data, while the model driven by machine learn-
ing is matched with the production data.

•	 Machine learning output models represent a more realistic 
approach after validation with the well production profile, 
which indicates no sand failure in the X-10 well.

•	 Machine learning parameters act as the optimum inputs for 
the sand management study, in which they are derived from 
well integrated log data.

•	 We recommend the application of machine learning in the 
absence of key logs in geomechanical studies to replace 
empirical equations.

Fig. 12   Sand management study results for well X-10 using machine learning parameters
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