4 research outputs found

    The search campaign to identify and Image the Philae Lander on the surface of comet 67P/Churyumov-Gerasimenko

    Get PDF
    On the 12th of November 2014, the Rosetta Philae Lander descended to make the first soft touchdown on the surface of a comet – comet 67P/Churyumov- Gerasimenko. That soft touchdown did occur but due to the failure in the firing of its two harpoons, Philae bounced and travelled across the comet making contact with the surface twice more before finally landing in a shaded rocky location somewhere on the southern hemisphere of the comet. The search campaign, led by ESA, involved multiple teams across Europe with a wide range of techniques used in support of it. This search campaign would continue through 2015 where a prime candidate on the surface was identified and on into 2016 to end on the 2nd of September 2016 when a definitive and conclusive image was taken of the lander on the surface of the comet, confirming the prime candidate to indeed be Philae

    Solar Orbiter: Mission and spacecraft design

    No full text
    The main scientific goal of Solar Orbiter is to address the central question of heliophysics: ‘how does the Sun create and control the heliosphere?’ To achieve this goal, the spacecraft carries a unique combination of ten scientific instruments (six remote-sensing instruments and four in-situ instruments) towards the innermost regions of the Solar System, to as close as 0.28 AU from the Sun during segments of its orbit. The orbital inclination will be progressively increased so that the spacecraft reaches higher solar latitudes (up to 34° towards the end of the mission), making detailed studies of the polar regions of the Sun possible for the first time. This paper presents the spacecraft and its intended trip around the Sun. We also discuss the main engineering challenges that had to be addressed during the development cycle, instrument integration, and testing of the spacecraft

    Coordination within the remote sensing payload on the Solar Orbiter mission

    No full text
    Context. To meet the scientific objectives of the mission, the Solar Orbiter spacecraft carries a suite of in-situ (IS) and remote sensing (RS) instruments designed for joint operations with inter-instrument communication capabilities. Indeed, previous missions have shown that the Sun (imaged by the RS instruments) and the heliosphere (mainly sampled by the IS instruments) should be considered as an integrated system rather than separate entities. Many of the advances expected from Solar Orbiter rely on this synergistic approach between IS and RS measurements. Aims. Many aspects of hardware development, integration, testing, and operations are common to two or more RS instruments. In this paper, we describe the coordination effort initiated from the early mission phases by the Remote Sensing Working Group. We review the scientific goals and challenges, and give an overview of the technical solutions devised to successfully operate these instruments together. Methods. A major constraint for the RS instruments is the limited telemetry (TM) bandwidth of the Solar Orbiter deep-space mission compared to missions in Earth orbit. Hence, many of the strategies developed to maximise the scientific return from these instruments revolve around the optimisation of TM usage, relying for example on onboard autonomy for data processing, compression, and selection for downlink. The planning process itself has been optimised to alleviate the dynamic nature of the targets, and an inter-instrument communication scheme has been implemented which can be used to autonomously alter the observing modes. We also outline the plans for in-flight cross-calibration, which will be essential to the joint data reduction and analysis. Results. The RS instrument package on Solar Orbiter will carry out comprehensive measurements from the solar interior to the inner heliosphere. Thanks to the close coordination between the instrument teams and the European Space Agency, several challenges specific to the RS suite were identified and addressed in a timely manner
    corecore