829 research outputs found

    Influence of M-phase chromatin on the anisotropy of microtubule asters

    Get PDF
    In many eukaryotic cells going through M-phase, a bipolar spindle is formed by microtubules nucleated from centrosomes. These microtubules, in addition to being "captured" by kinetochores, may be stabilized by chromatin in two different ways: short-range stabilization effects may affect microtubules in close contact with the chromatin, while long-range stabilization effects may "guide" microtubule growth towards the chromatin (e.g., by introducing a diffusive gradient of an enzymatic activity that affects microtubule assembly). Here, we use both meiotic and mitotic extracts from Xenopus laevis eggs to study microtubule aster formation and microtubule dynamics in the presence of chromatin. In "low-speed" meiotic extracts, in the presence of salmon sperm chromatin, we find that short-range stabilization effects lead to a strong anisotropy of the microtubule asters. Analysis of the dynamic parameters of microtubule growth show that this anisotropy arises from a decrease in the catastrophe frequency, an increase in the rescue frequency and a decrease in the growth velocity. In this system we also find evidence for long-range "guidance" effects, which lead to a weak anisotropy of the asters. Statistically relevant results on these long-range effects are obtained in "high-speed" mitotic extracts in the presence of artificially constructed chromatin stripes. We find that aster anisotropy is biased in the direction of the chromatin and that the catastrophe frequency is reduced in its vicinity. In this system we also find a surprising dependence of the catastrophe and the rescue frequencies on the length of microtubules nucleated from centrosomes: the catastrophe frequency increase and the rescue frequency decreases with microtubule length

    Path integrals for stiff polymers applied to membrane physics

    Full text link
    Path integrals similar to those describing stiff polymers arise in the Helfrich model for membranes. We show how these types of path integrals can be evaluated and apply our results to study the thermodynamics of a minority stripe phase in a bulk membrane. The fluctuation induced contribution to the line tension between the stripe and the bulk phase is computed, as well as the effective interaction between the two phases in the tensionless case where the two phases have differing bending rigidities.Comment: 11 pages RevTex, 4 figure

    Dynamics of active membranes with internal noise

    Full text link
    We study the time-dependent height fluctuations of an active membrane containing energy-dissipating pumps that drive the membrane out of equilibrium. Unlike previous investigations based on models that neglect either curvature couplings or random fluctuations in pump activities, our formulation explores two new models that take both of these effects into account. In the first model, the magnitude of the nonequilibrium forces generated by the pumps is allowed to fluctuate temporally. In the second model, the pumps are allowed to switch between "on" and "off" states. We compute the mean squared displacement of a membrane point for both models, and show that they exhibit distinct dynamical behaviors from previous models, and in particular, a superdiffusive regime specifically arising from the shot noise.Comment: 7 pages, 4 figure

    Printing Multistrain Bacterial Patterns with a Piezoelectric Inkjet Printer

    Get PDF
    Many studies involving interacting microorganisms would benefit from simple devices able to deposit cells in precisely defined patterns. We describe an inexpensive bacterial piezoelectric inkjet printer (adapted from the design of the POSaM oligonucleotide microarrayer) that can be used to “print out” different strains of bacteria or chemicals in small droplets onto a flat surface at high resolution. The capabilities of this device are demonstrated by printing ordered arrays comprising two bacterial strains labeled with different fluorescent proteins. We also characterized several properties of this piezoelectric printer, such as the droplet volume (of the order of tens of pl), the distribution of number of cells in each droplet, and the dependence of droplet volume on printing frequency. We established the limits of the printing resolution, and determined that the printed viability of Escherichia coli exceeded 98.5%

    Decrumpling membranes by quantum effects

    Full text link
    The phase diagram of an incompressible fluid membrane subject to quantum and thermal fluctuations is calculated exactly in a large number of dimensions of configuration space. At zero temperature, a crumpling transition is found at a critical bending rigidity 1/αc1/\alpha_{\rm c}. For membranes of fixed lateral size, a crumpling transition occurs at nonzero temperatures in an auxiliary mean field approximation. As the lateral size L of the membrane becomes large, the flat regime shrinks with 1/lnL1/\ln L.Comment: 9 pages, 4 figure

    Fluctuation induced interactions between domains in membranes

    Full text link
    We study a model lipid bilayer composed of a mixture of two incompatible lipid types which have a natural tendency to segregate in the absence of membrane fluctuations. The membrane is mechanically characterized by a local bending rigidity κ(ϕ)\kappa(\phi) which varies with the average local lipid composition ϕ\phi. We show, in the case where κ\kappa varies weakly with ϕ\phi, that the effective interaction between lipids of the same type can either be everywhere attractive or can have a repulsive component at intermediate distances greater than the typical lipid size. When this interaction has a repulsive component, it can prevent macro-phase separation and lead to separation in mesophases with a finite domain size. This effect could be relevant to certain experimental and numerical observations of mesoscopic domains in such systems.Comment: 9 pages RevTex, 1 eps figur

    Theoretical model for the formation of caveolae and similar membrane invaginations

    Get PDF
    We study a physical model for the formation of bud-like invaginations on fluid lipid membranes under tension, and apply this model to caveolae formation. We demonstrate that budding can be driven by membrane-bound proteins, provided that they exert asymmetric forces on the membrane that give rise to bending moments. In particular, caveolae formation does not necessarily require forces to be applied by the cytoskeleton. Our theoretical model is able to explain several features observed experimentally in caveolae, where proteins in the caveolin family are known to play a crucial role in the formation of caveolae buds. These include 1), the formation of caveolae buds with sizes in the 100-nm range and 2), that certain N- and C-termini deletion mutants result in vesicles that are an order-of-magnitude larger. Finally, we discuss the possible origin of the morphological striations that are observed on the surfaces of the caveolae

    Interfaces of Modulated Phases

    Full text link
    Numerically minimizing a continuous free-energy functional which yields several modulated phases, we obtain the order-parameter profiles and interfacial free energies of symmetric and non-symmetric tilt boundaries within the lamellar phase, and of interfaces between coexisting lamellar, hexagonal, and disordered phases. Our findings agree well with chevron, omega, and T-junction tilt-boundary morphologies observed in diblock copolymers and magnetic garnet films.Comment: 4 page

    Porters versus rowers: a unified stochastic model of motor proteins.

    Full text link
    corecore