170 research outputs found

    Cerebral tumor or pseudotumor?

    Get PDF
    AbstractPseudotumoral lesions are uncommon but important to identity lesions. They can occur during inflammatory diseases (systemic diseases, vasculitis, demyelinating diseases), infectious, and vascular diseases. Also, in a patient with a treated tumor, pseudo-progression and radionecrosis must be differentiated from the tumoral development. Diagnosis can be difficult on an MRI scan, but some MRI aspects in conventional sequences, diffusion, perfusion and spectroscopy can suggest the pseudotumoral origin of a lesion. Imaging must be interpreted according to the context, the clinic and the biology. The presence of associated intracranial lesions can orientate towards a systemic or infectious disease. A T2 hyposignal lesion suggests granulomatosis or histiocytosis, especially if a meningeal or hypothalamic–pituitary involvement is associated. Non-tumoral lesions are generally not hyperperfused. In the absence of a definitive diagnosis, the evolution of these lesions, whether under treatment or spontaneous, is fundamental

    Longitudinal changes in functional connectivity of cortico-basal ganglia networks in manifests and premanifest huntington's disease

    Get PDF
    Huntington's disease (HD) is a genetic neurological disorder resulting in cognitive and motor impairments. We evaluated the longitudinal changes of functional connectivity in sensorimotor, associative and limbic cortico-basal ganglia networks. We acquired structural MRI and resting-state fMRI in three visits one year apart, in 18 adult HD patients, 24 asymptomatic mutation carriers (preHD) and 18 gender- and age-matched healthy volunteers from the TRACK-HD study. We inferred topological changes in functional connectivity between 182 regions within cortico-basal ganglia networks using graph theory measures. We found significant differences for global graph theory measures in HD but not in preHD. The average shortest path length (L) decreased, which indicated a change toward the random network topology. HD patients also demonstrated increases in degree k, reduced betweeness centrality bc and reduced clustering C. Changes predominated in the sensorimotor network for bc and C and were observed in all circuits for k. Hubs were reduced in preHD and no longer detectable in HD in the sensorimotor and associative networks. Changes in graph theory metrics (L, k, C and bc) correlated with four clinical and cognitive measures (symbol digit modalities test, Stroop, Burden and UHDRS). There were no changes in graph theory metrics across sessions, which suggests that these measures are not reliable biomarkers of longitudinal changes in HD. preHD is characterized by progressive decreasing hub organization, and these changes aggravate in HD patients with changes in local metrics. HD is characterized by progressive changes in global network interconnectivity, whose network topology becomes more random over time. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc

    The Neuromelanin-related T2* Contrast in Postmortem Human Substantia Nigra with 7T MRI

    Get PDF
    High field magnetic resonance imaging (MRI)-based delineation of the substantia nigra (SN) and visualization of its inner cellular organization are promising methods for the evaluation of morphological changes associated with neurodegenerative diseases; however, corresponding MR contrasts must be matched and validated with quantitative histological information. Slices from two postmortem SN samples were imaged with a 7 Tesla (7T) MRI with T1 and T2* imaging protocols and then stained with Perl???s Prussian blue, Kluver-Barrera, tyrosine hydroxylase, and calbindin immunohistochemistry in a serial manner. The association between T2* values and quantitative histology was investigated with a co-registration method that accounts for histology slice preparation. The ventral T2* hypointense layers between the SNr and the crus cerebri extended anteriorly to the posterior part of the crus cerebri, which demonstrates the difficulty with an MRI-based delineation of the SN. We found that the paramagnetic hypointense areas within the dorsolateral SN corresponded to clusters of neuromelanin (NM). These NM-rich zones were distinct from the hypointense ventromedial regions with high iron pigments. Nigral T2* imaging at 7T can reflect the density of NM-containing neurons as the metal-bound NM macromolecules may decrease T2* values and cause hypointense signalling in T2* imaging at 7T.ope

    Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson’s disease

    Get PDF
    This study aimed to investigate the spatiotemporal changes in neuromelanin-sensitive MRI signal in the substantia nigra and their relation to clinical scores of disease severity in patients with early or progressing Parkinson’s disease and patients with idiopathic rapid eye movement sleep behaviour disorder (iRBD) exempt of Parkinsonian signs compared to healthy control subjects. Longitudinal T1-weighted anatomical and neuromelanin-sensitive MRI was performed in two cohorts, including patients with iRBD, patients with early or progressing Parkinson’s disease, and control subjects. Based on the aligned substantia nigra segmentations using a study-specific brain anatomical template, parametric maps of the probability of a voxel belonging to the substantia nigra were calculated for patients with various degrees of disease severity and controls. For each voxel in the substantia nigra, probability map of controls, correlations between signal-to-noise ratios on neuromelanin-sensitive MRI in patients with iRBD and Parkinson’s disease and clinical scores of motor disability, cognition and mood/behaviour were calculated. Our results showed that in patients, compared to the healthy control subjects, the volume of the substantia nigra was progressively reduced for increasing disease severity. The neuromelanin signal changes appeared to start in the posterolateral motor areas of the substantia nigra and then progressed to more medial areas of this region. The ratio between the volume of the substantia nigra in patients with Parkinson’s disease relative to the controls was best fitted by a mono-exponential decay. Based on this model, the pre-symptomatic phase of the disease started at 5.3 years before disease diagnosis, and 23.1% of the substantia nigra volume was lost at the time of diagnosis, which was in line with previous findings using post-mortem histology of the human substantia nigra and radiotracer studies of the human striatum. Voxel-wise patterns of correlation between neuromelanin-sensitive MRI signal-to-noise ratio and motor, cognitive and mood/behavioural clinical scores were localized in distinct regions of the substantia nigra. This localization reflected the functional organization of the nigrostriatal system observed in histological and electrophysiological studies in non-human primates (motor, cognitive and mood/behavioural domains). In conclusion, neuromelanin-sensitive MRI enabled us to assess voxel-wise modifications of substantia nigra’s morphology in vivo in humans, including healthy controls, patients with iRBD and patients with Parkinson’s disease, and identify their correlation with nigral function across all motor, cognitive and behavioural domains. This insight could help assess disease progression in drug trials of disease modification

    On the Role of the Striatum in Response Inhibition

    Get PDF
    BACKGROUND: Stopping a manual response requires suppression of the primary motor cortex (M1) and has been linked to activation of the striatum. Here, we test three hypotheses regarding the role of the striatum in stopping: striatum activation during successful stopping may reflect suppression of M1, anticipation of a stop-signal occurring, or a slower response build-up. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-four healthy volunteers underwent functional magnetic resonance imaging (fMRI) while performing a stop-signal paradigm, in which anticipation of stopping was manipulated using a visual cue indicating stop-signal probability, with their right hand. We observed activation of the striatum and deactivation of left M1 during successful versus unsuccessful stopping. In addition, striatum activation was proportional to the degree of left M1 deactivation during successful stopping, implicating the striatum in response suppression. Furthermore, striatum activation increased as a function of stop-signal probability and was to linked to activation in the supplementary motor complex (SMC) and right inferior frontal cortex (rIFC) during successful stopping, suggesting a role in anticipation of stopping. Finally, trial-to-trial variations in response time did not affect striatum activation. CONCLUSIONS/SIGNIFICANCE: The results identify the striatum as a critical node in the neural network associated with stopping motor responses. As striatum activation was related to both suppression of M1 and anticipation of a stop-signal occurring, these findings suggest that the striatum is involved in proactive inhibitory control over M1, most likely in interaction with SMC and rIFC

    Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3

    Get PDF
    Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.Funding: This study has been supported: (i) by MICINN (SAF2009-11847 and SAF2015-68580-C2-1-R), CIBERNED (CB06/05/0089) and “Fundación Eugenio Rodríguez Pascual”, to JFR; (ii) by the Research and Education Component of the Advancing a Healthier Wisconsin Endowment at the Medical College of Wisconsin, to CJH; and (iii) by Fundação para a Ciência e Tecnologia through the project POCI-01-0145-FEDER-016818 (PTDC/NEU-NMC/3648/2014) and co-financed by the Portuguese North Regional Operational Program (ON.2 – O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), to PM. Carmen Rodríguez-Cueto was a predoctoral fellow supported by FPI Program-Ministry of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Expression of Nestin by Neural Cells in the Adult Rat and Human Brain

    Get PDF
    Neurons and glial cells in the developing brain arise from neural progenitor cells (NPCs). Nestin, an intermediate filament protein, is thought to be expressed exclusively by NPCs in the normal brain, and is replaced by the expression of proteins specific for neurons or glia in differentiated cells. Nestin expressing NPCs are found in the adult brain in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus. While significant attention has been paid to studying NPCs in the SVZ and SGZ in the adult brain, relatively little attention has been paid to determining whether nestin-expressing neural cells (NECs) exist outside of the SVZ and SGZ. We therefore stained sections immunocytochemically from the adult rat and human brain for NECs, observed four distinct classes of these cells, and present here the first comprehensive report on these cells. Class I cells are among the smallest neural cells in the brain and are widely distributed. Class II cells are located in the walls of the aqueduct and third ventricle. Class IV cells are found throughout the forebrain and typically reside immediately adjacent to a neuron. Class III cells are observed only in the basal forebrain and closely related areas such as the hippocampus and corpus striatum. Class III cells resemble neurons structurally and co-express markers associated exclusively with neurons. Cell proliferation experiments demonstrate that Class III cells are not recently born. Instead, these cells appear to be mature neurons in the adult brain that express nestin. Neurons that express nestin are not supposed to exist in the brain at any stage of development. That these unique neurons are found only in brain regions involved in higher order cognitive function suggests that they may be remodeling their cytoskeleton in supporting the neural plasticity required for these functions

    Taking two to tango:fMRI analysis of improvised joint action with physical contact

    Get PDF
    <div><p>Many forms of joint action involve physical coupling between the participants, such as when moving a sofa together or dancing a tango. We report the results of a novel two-person functional MRI study in which trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, and in which the two alternated between being the leader and the follower of joint improvised movements. Leading showed a general pattern of self-orientation, being associated with brain areas involved in motor planning, navigation, sequencing, action monitoring, and error correction. In contrast, following showed a far more sensory, externally-oriented pattern, revealing areas involved in somatosensation, proprioception, motion tracking, social cognition, and outcome monitoring. We also had participants perform a “mutual” condition in which the movement patterns were pre-learned and the roles were symmetric, thereby minimizing any tendency toward either leading or following. The mutual condition showed greater activity in brain areas involved in mentalizing and social reward than did leading or following. Finally, the analysis of improvisation revealed the dual importance of motor-planning and working-memory areas. We discuss these results in terms of theories of both joint action and improvisation.</p></div
    corecore