643 research outputs found

    Simplification rationnelle des outils hydrologiques de gestion : recommandations méthodologiques pour la construction de modèles semi-empiriques à origine mécaniste

    Get PDF
    Les modèles de simulation hydrologiques sont reconnus comme des outils mathématiques très performants mais généralement d'application difficile, principalement à cause du nombre élevé des paramètres requis. À l'inverse, les outils actuels de gestion sont généralement développés à l'aide d'approches empiriques limitant leur application. De plus, leurs paramètres ne sont pas des grandeurs mesurables et doivent être ajustés pour chaque situation. Une approche est proposée pour le développement d'outils semi empiriques de gestion. Elle consiste à simuler un grand nombre de scénarios en utilisant un modèle complexe de simulation puis à rationaliser l'information obtenue pour développer un nouveau modèle semi empirique. L'exemple illustrant cette approche concerne l'évaluation des flux d'eau ruisselée à la surface des champs, lessivée vers la nappe souterraine et drainée par les drains agricoles spécifiquement pour le contexte du Québec. À partir des résultats de simulation de 4500 scénarios, une simplification.rationalisation a permis de réduire à 120 le nombre de scénarios de référence à l'aide desquels peuvent être évalués tous les scénarios possibles par de simples interpolations linéaires. Une application de l'algorithme résultant sur un site du Québec a montré la bonne concordance entre les résultats calculés et mesurés. À la fois l'ordre de grandeur du ruissellement et du drainage et leur grandeur relative sont bien évalués.Considering the complexity of the water cycle in soil systems, models are used more than ever in parallel with field investigations to assist in the decision making process (KHAKURAL et ROBERT, 1993). Most available models are either too complicated (many non-measurable parameters) or too simple (empirical or site-specific) to be used as management tools. Such tools should conform to known theory and should be structured to enable efficient analysis of field situations with minimal requirements for parameters (CARSEL et al 1984). However, if the mechanistic models are very performing tools with regards to their representation of the processes and for the accuracy and reliability of their results, they are criticized for their complexity and for the large number of parameters they require. For this reason, their potential application as management tools cannot be recommended especially in preliminary investigations when the methodology has to be straight forward and rapidly implemented. On the other hand, existing management tools are often developed using an empirical approach for a specific context which considerably limits their transferability to different situations. Moreover, their empirical parameters often cannot be measured for the new situations, and must be adjusted for each new application. A new approach conciliating the qualities of both kinds of tools was elaborated for the development of management tools. This approach consists in using mechanistic models for simulating a set of possible situations and in rationalizing the information obtained by simulation through regression analyses or other methods. An example of this methodology is presented in this paper with the development of the hydrological part (runoff, leaching and drainage) of a management tool dedicated to the evaluation of nutrient losses related to manure applications. Developed for the Quebec conditions, 4500 theoretical situations were considered corresponding to ten climates, nine soil textures, 25 crops and two slope values. Independently, agricultural management practices and drainage were taken into account.For the mechanistic simulation of the water budget in the 4500 theoretical situations, the hydrologic module of the mechanistic-stochastic model AgriFlux was used (BANTON et al. 1993b). Because of the important field variability of most parameters, the stochastic AgriFlux model incorporates the variability resulting from field heterogeneity, measurement errors and intrinsic uncertainty related to parameter definition. The soil profile is divided in plot scale homogeneous horizons (or compartments) and a daily time step is used in the calculations. The water budget module in AgriFlux is named HydriFlux and simulates all the water-related processes (precipitations, snowmelt, infiltration, runoff, water uptake by plants, evaporation, percolation and drainage) using characteristic water contents and unsaturated hydraulic conductivity.In the example presented, the simulation results obtained by running HydriFlux have shown that the soil water fluxes (runoff and percolation) vary as linear functions of both the annual rain volume (the most important characteristic of the climate) and the logarithm of the saturated hydraulic conductivity (the most important characteristic of the soil type). A reduction of the number of crops could also be achieved by taking into account the water needs and the water uptake curves of the crops. This rationalization-simplification reduced the number of theoretical simulations to be stored in the management tool to 120 (2 climates x 3 textures x 10 crops x 2 slopes). These represent only 2.7% of the initial situations simulated by the mechanistic HydriFlux model. The different water fluxes are stored in the management tool as tables in which direct interpolations are performed to calculate the fluxes corresponding to all the potential intermediary situations. Such developed management tool presents good qualities at the same time for its calculation speed, for its easy parameterization, for the reliability of its evaluation (through the evaluation of the mechanistic model) and for its high transferability and applicability to various situations. The calculations are rapidly done and their programming can be very easily made by using a spreadsheet software.An application of this evaluation method has been done on an experimental site located in Quebec (ENRIGHT et MADRAMOOTOO, 1994), the only one for which both the runoff and the drainage have been measured during many years (1989 to 1991, April to December). The application on two fields (1.84 et 4.63 ha) has shown a good concordance between the calculated and measured results, as well for the magnitude of the fluxes than for the relative importance of these fluxes. Moreover, this application has shown that the variability of the measured values is higher than the calculated ones, attesting of the great influence of the variations in climatic, soil, crop and management conditions on the water budget. However, the good evaluation of the fluxes (for relative and absolute values) confirms the reliability of the proposed approach and of the simplification

    Ensemble Methods for Survival Data with Time-Varying Covariates

    Full text link
    Survival data with time-varying covariates are common in practice. If relevant, such covariates can improve on the estimation of a survival function. However, the traditional survival forests - conditional inference forest, relative risk forest and random survival forest - have accommodated only time-invariant covariates. We generalize the conditional inference and relative risk forests to allow time-varying covariates. We compare their performance with that of the extended Cox model, a commonly used method, and the transformation forest method, designed to detect non-proportional hazards deviations and adapted here to accommodate time-varying covariates, through a comprehensive simulation study in which the Kaplan-Meier estimate serves as a benchmark and the integrated L2 difference between the true and estimated survival functions is used for evaluation. In general, the performance of the two proposed forests substantially improves over the Kaplan-Meier estimate. Under the proportional-hazard setting, the best method is always one of the two proposed forests, while under the non-proportional hazards setting, it is the adapted transformation forest. We use K-fold cross-validation to choose between the methods, which is shown to be an effective tool to provide guidance in practice. The performance of the proposed forest methods for time-invariant covariate data is broadly similar to that found for time-varying covariate data

    An imaging neutron/gamma-ray spectrometer

    Get PDF
    We present the test results of a neutron/gamma-ray imaging spectrometer for the identification and location of radioactive and special nuclear materials. Radioactive materials that could be fashioned into a radiation dispersal device typically emit gamma rays, while fissile materials such as uranium and plutonium emit both neutrons and gamma rays via spontaneous or induced fission. The simultaneous detection of neutrons and gamma rays is a clear indication of the presence of fissile material. The instrument works as a double-scatter telescope, requiring a neutron or gamma ray to undergo an interaction in two detectors to be considered a valid event. While this requirement reduces the detector efficiency, it yields information about the direction and energy of the incident particle, which is then used to reconstruct an image of the emitting source. Because of this imaging capability background events can be rejected, decreasing the number of events required for high confidence detection and thereby greatly improving its sensitivity. The instrument is optimized for the detection of neutrons with energies from 1-20 MeV and gamma rays from 0.4 to 10 MeV. Images and energy spectra for neutron and gamma rays are reported for several sources including depleted uranium and plutonium. In addition, the effect of neutron source shielding is investigated

    A portable neutron spectroscope (NSPECT) for detection, imaging and identification of nuclear material

    Get PDF
    We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument

    The potential of major ion chemistry to assess groundwater vulnerability of a regional aquifer in southern Quebec (Canada)

    Get PDF
    Groundwater vulnerability mapping provides useful but limited information for developing protection plans of the resource. Classical vulnerability ranking methods often do not take into account complex hydrostratigraphy and never consider groundwater flow dynamics. The objective of this work was to test the potential of major ion chemistry to assess regional-scale intrinsic groundwater vulnerability. Because it reflects water–sediment and water–rock interactions, the new vulnerability index reflects both infiltration processes and groundwater hydrodynamics. The method was applied on a regional fractured bedrock aquifer located in the Becancour region of southern Quebec (Canada). In this region, hydrogeochemistry shows that freshly recharged groundwater evolves from (Ca, Mg)–HCO3 and Ca–SO4 to Na–HCO3 type with gradually increasing confinement conditions in the fractured aquifer and tends to Na–Cl type locally by mixing with trapped marine pore-water. The new method identified recharge areas as those of the highest vulnerability and gradually decreasing vulnerability as confinement of the aquifer increased. It also highlights local discontinuities in confinement that differ from the regional pattern. Results showed a good correlation between groundwater vulnerability estimated with the new method and nitrate occurrence in groundwater. Eighty-two per cent of all samples presenting detectable nitrate concentrations were characterized by a Hydrogeochemical Vulnerability Index greater than 9 (maximum is 10). The ability of the new vulnerability method to identify areas vulnerable to detectable nitrate concentrations was much higher than that deriving from the DRASTIC method. This work confirms that major ions chemistry contains significant information about groundwater vulnerability and could be used to improve groundwater resource management

    An imaging neutron/gamma-ray spectrometer

    Get PDF
    We present the design and development of a dual-species, neutron/Îł-ray imaging spectrometer for the identification and location of radioactive and special nuclear materials (SNM). Real-time detection and identification is important for locating fissile materials. These materials, specifically uranium and plutonium, emit neutrons and Îł rays via spontaneous or induced fission. Co-located neutron and Îł-ray emissions are a sure sign of fissile material, requiring very few spatially correlated events for a significant detection. Our instrument design detects neutrons and Îł rays from all sources in its field of view, constructs images of the emission pattern, and reports the spectra for both species. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator for neutrons, and Compton scattering in organic scintillator followed by photoelectric absorption in inorganic scintillator for Îł rays. The instrument is optimized for neutron imaging and spectroscopy in the 1-20 MeV range. We recorded images and spectra of a Cf-252 source from 0.5 - 10 MeV, and have done similarly for several Îł-ray sources. We report the results of laboratory testing of this expanded instrument and compare them to detailed Monte Carlo simulations using Geant4

    Chemotherapy-induced toxicities: An imaging primer

    Get PDF
    The Coronavirus Disease of 2019 (COVID-19) pandemic has caused significant delays in the delivery of cancer treatments in Canada. As cancer treatment and imaging volumes return to normal, radiologists will encounter more cases of chemotherapy-induced toxicities. These toxicities have varied appearances on imaging, and can affect multiple organ systems. The purpose of this review is to offer a unified resource for general radiologists regarding the imaging appearances of chemotherapy-induced toxicities
    • …
    corecore