733 research outputs found

    The Implications of Galaxy Formation Models for the TeV Observations of Current Detectors

    Full text link
    This paper represents a step toward constraining galaxy formation models via TeV gamm a ray observations. We use semi-analytic models of galaxy formation to predict a spectral distribution for the intergalactic infrared photon field, which in turn yields information about the absorption of TeV gamma rays from extra-galactic sources. By making predictions for integral flux observations at >200 GeV for several known EGRE T sources, we directly compare our models with current observational upper limits obtained by Whipple. In addition, our predictions may offer a guide to the observing programs for the current population of TeV gamma ray observatories.Comment: 6 pages, 11 figures, to appear in the proceedings of the 6th TeV Workshop at Snowbird, U

    Sizes of Voids as a test for Dark Matter Models

    Full text link
    We use the void probability statistics to study the redshift-space galaxy distribution as described by a volume-limited subsample of the Perseus-Pisces survey. We compare the results with the same analysis realized on artificial samples, extracted from high-resolution N-body simulations by reproducing the observational biases of the real data set. Simulations are run for the Cold+HotDM model (CHDM) and for unbiased and biased (b=1.5) CDM models in a 50 Mpc/h box. We identify galaxies as residing in peaks of the evolved density field. We fragment overmerged structures into individual galaxies so as to reproduce both the correct luminosity function (after assuming M/ L values for the resulting galaxy groups) and the two-point correlation function. Our main result is that a void-probability function (VPF) from the standard CHDM model with fractions 60% cold, 30% hot, 10% barions, exceeds the observational VPF with a high confidence level. CDM models produce smaller VPF independent of the biasing parameter. We verify the robustness of this result against changing the observer position in the simulations and the galaxy identification in the evolved density field.Comment: 15 pages, postscrip

    Degenerate Fermi gas perturbations at standard background cosmology

    Full text link
    The hypothesis of a tiny fraction of the cosmic inventory evolving cosmologically as a degenerate Fermi gas test fluid at some dominant cosmological background is investigated. Our analytical results allow for performing preliminary computations to the evolution of perturbations for relativistic and non-relativistic test fluids. The density fluctuation, δ\delta, the fluid velocity divergence, θ\theta, and an explicit expression for the dynamics of the shear stress, σ\sigma, are obtained for a degenerate Fermi gas in the background regime of radiation. Extensions to the dominance of matter and to the Λ\LambdaCDM cosmological background are also investigated and lessons concerning the formation of large structures of degenerate Fermi gas are depicted.Comment: 20 pages, 4 figure

    Phenomenology of Neutrino Oscillations

    Full text link
    The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.Comment: 11 pages, 2 figures, latex, Plenary talk given at Workshop in High Energy Particle Physics-6, Chennai, Indi

    CP and T violation test in neutrino oscillation

    Get PDF
    We examine how large violation of CP and T is allowed in long base line neutrino experiments. When we attribute only the atmospheric neutrino anomaly to neutrino oscillation we may have large CP violation effect. When we attribute both the atmospheric neutrino anomaly and the solar neutrino deficit to neutrino oscillation we may have a sizable T violation effect proportional to the ratio of two mass differences; it is difficult to see CP violation since we can't ignore the matter effect. We give a simple expression for T violation in the presence of matter.Comment: 12 pages + 2 eps figures, Latex, In order to avoid misunderstanding we have refined our English and rewritten the parts which might be misleading. Several typographical errors are correcte

    Constraints on non-thermal Dark Matter from Planck lensing extraction

    Full text link
    Distortions of CMB temperature and polarization anisotropy maps caused by gravitational lensing, observable with high angular resolution and sensitivity, can be used to constrain the sterile neutrino mass, offering several advantages against the analysis based on the combination of CMB, LSS and Ly\alpha forest power spectra. As the gravitational lensing effect depends on the matter distribution, no assumption on light-to-mass bias is required. In addition, unlike the galaxy clustering and Ly\alpha forest power spectra, the projected gravitational potential power spectrum probes a larger range of angular scales, the non-linear corrections being required only at very small scales. Taking into account the changes in the time-temperature relation of the primordial plasma and the modification of the neutrino thermal potential, we compute the projected gravitational potential power spectrum and its correlation with the temperature in the presence of DM sterile neutrino. We show that the cosmological parameters are generally not biased when DM sterile neutrino is included. From this analysis we found a lower limit on DM sterile neutrino mass m_s >2.08 keV at 95% CL, consistent with the lower mass limit obtained from the combined analysis of CMB, SDSS 3D power spectrum and SDSS Ly\alpha forest power spectrum (mνs>1.7m_{\nu_s}>1.7 keV). We conclude that although the information that can be obtained from lensing extraction is rather limited due to the high level of the lensing noise of Planck experiment, weak lensing of CMB offers a valuable alternative to constrain the dark matter sterile neutrino mass.Comment: 15 pages, 6 figure

    Semiclassical Treatment of Diffraction in Billiard Systems with a Flux Line

    Full text link
    In billiard systems with a flux line semiclassical approximations for the density of states contain contributions from periodic orbits as well as from diffractive orbits that are scattered on the flux line. We derive a semiclassical approximation for diffractive orbits that are scattered once on a flux line. This approximation is uniformly valid for all scattering angles. The diffractive contributions are necessary in order that semiclassical approximations are continuous if the position of the flux line is changed.Comment: LaTeX, 17 pages, 4 figure
    corecore