12,575 research outputs found

    Electroweak Theory Without Higgs Bosons

    Full text link
    A perturbative SU(2)_L X U(1)_Y electroweak theory containing W, Z, photon, ghost, lepton and quark fields, but no Higgs or other fields, gives masses to W, Z and the non-neutrino fermions by means of an unconventional choice for the unperturbed Lagrangian and a novel method of renormalisation. The renormalisation extends to all orders. The masses emerge on renormalisation to one loop. To one loop the neutrinos are massless, the A -> Z transition drops out of the theory, the d quark is unstable and S-matrix elements are independent of the gauge parameter xi.Comment: 27 pages, LaTex, no figures; revised for publication; accepted by Int. J. Mod. Phys. A; includes biographical note on A. F. Nicholso

    Atlantic menhaden, Brevoortia tyrannus, Purse Seine Fishery, 1972-84, with a brief discussion of age and size composition of the Landings

    Get PDF
    This report summarizes (I) annual purse seine landings of Atlantic menhaden, Brevoortia tyrannus, for 1972-84, (2) estimated numbers of fish caught by fishing area. (3) estimates of nominal fishing effort and catch-per-unit-effort, (4) mean fish length and weight, and (5) major changes in the fishery. During the 1970s stock size and recruitment increased and the age composition broadened. reversing trends witnessed during the fishery's decline in the 1960s. Landings steadily improved and by 1980 the total coast wide landings exceeded 400,000 metric tons. Nevertheless, the character of the fishery changed considerably. Eleven reduction plants processed fish at seven ports in 1972, but in 1984 only eight plants operated at live ports. Beginning in the mid-1960s the center of fishing aclivity shifted from the Middle Atlantic area to the Chesapeake Bay area, which has continued to dominate the fishery in landings and effort through the 1970s and 1980s. During this period the average size and age of fish in the catches declined. (PDF file contains 30 pages.

    Origin and evolution of the zodiacal dust cloud

    Get PDF
    The astrophysical importance of the zodiacal cloud became more apparent. The most useful source of information on the structure of the zodiacal cloud is the Infrared Astronomical Satellite (IRAS) observations. A substantial fraction of the extensive IRAS data set was analyzed. Also, a numerical model was developed (SIMUL) that allows to calculate the distribution of night-sky brightness that would be produced by any particular distribution of dust particle orbits. This model includes the effects of orbital perturbations by both the planets and solar radiation, it reproduces the exact viewing geometry of the IRAS telescope, and allows for the eccentricity of the Earth's orbit. SIMUL now is used to model not just the solar system dust bands discovered by IRAS but the whole zodiacal cloud

    Systematic study of Optical Feshbach Resonances in an ideal gas

    Full text link
    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the Optical Feshbach Resonance (OFR) effect in an ultracold gas of bosonic 88^{88}Sr. A systematic measurement of three resonances allows precise determinations of the OFR strength and scaling law, in agreement with coupled-channels theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. OFR could be used to control atomic interactions with high spatial and temporal resolution.Comment: Significant changes to text and figure presentation to improve clarity. Extended supplementary material. 4 pages, 4 figures; includes supplementary material 8 pages, 4 figures. Submitted to Physical Review Letter

    Effect of enclosure shape on natural convection velocities

    Get PDF
    A numerical analysis was performed to compare natural convection velocities in two dimensional enclosures of various shape. The following shapes were investigated: circle, square, horizontal and upright 2 x 1 aspect ratio rectangles, horizontal and upright half circles, diamond. In all cases, the length scale in the various dimensionless parameters, such as Rayleigh number, is defined as the diameter of the equal area circle. Natural convection velocities were calculated for Rayleigh numbers of 1000 and 5000 with the temperature difference taken to be across (1) the maximum horizontal dimension, (2) the median horizontal line (line through centroid) and (3) the horizontal distance such that the temperature gradient is the same for shapes of equal area. For the class of shapes including the square, upright half circle and upright rectangle, the computed velocities were found to agree very closely with that of the equal area circle when the temperature difference is taken to be across the maximum horizontal dimension (condition (a)). The velocities for the horizontal rectangle and half circle were found to be approximately one half that of the equal area circle for the same condition. Better overall agreement among all shapes was obtained by setting the temperature difference across a distance such that the temperature gradients were equal for shapes of equal area

    Development and validation of a chemostat gut model to study both planktonic and biofilm modes of growth of Clostridium difficile and human microbiota

    Get PDF
    Copyright: 2014 Crowther et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The human gastrointestinal tract harbours a complex microbial community which exist in planktonic and sessile form. The degree to which composition and function of faecal and mucosal microbiota differ remains unclear. We describe the development and characterisation of an in vitro human gut model, which can be used to facilitate the formation and longitudinal analysis of mature mixed species biofilms. This enables the investigation of the role of biofilms in Clostridium difficile infection (CDI). A well established and validated human gut model of simulated CDI was adapted to incorporate glass rods that create a solid-gaseous-liquid interface for biofilm formation. The continuous chemostat model was inoculated with a pooled human faecal emulsion and controlled to mimic colonic conditions in vivo. Planktonic and sessile bacterial populations were enumerated for up to 46 days. Biofilm consistently formed macroscopic structures on all glass rods over extended periods of time, providing a framework to sample and analyse biofilm structures independently. Whilst variation in biofilm biomass is evident between rods, populations of sessile bacterial groups (log10 cfu/g of biofilm) remain relatively consistent between rods at each sampling point. All bacterial groups enumerated within the planktonic communities were also present within biofilm structures. The planktonic mode of growth of C. difficile and gut microbiota closely reflected observations within the original gut model. However, distinct differences were observed in the behaviour of sessile and planktonic C. difficile populations, with C. difficile spores preferentially persisting within biofilm structures. The redesigned biofilm chemostat model has been validated for reproducible and consistent formation of mixed species intestinal biofilms. This model can be utilised for the analysis of sessile mixed species communities longitudinally, potentially providing information of the role of biofilms in CDI.Peer reviewe

    The origin and evolution of the zodiacal dust cloud

    Get PDF
    We have now analyzed a substantial fraction of the IRAS observations of the zodiacal cloud, particularly in the 25 micron waveband. We have developed a gravitational perturbation theory that incorporates the effects of Poynting-Robertson light drag (Gomes and Dermott, 1992). We have also developed a numerical model, the SIMUL mode, that reproduces the exact viewing geometry of the IRAS telescope and calculates the distribution of thermal flux produced by any particular distribution of dust particle orbits (Dermott and Nicholson, 1989). With these tools, and using a distribution of orbits based on those of asteroidal particles with 3.4 micron radii whose orbits decay due to Poynting-Robertson light drag and are perturbed by the planets, we have been able to: (1) account for the inclination and node of the background zodiacal cloud observed by IRAS in the 25 micron waveband; (2) relate the distribution of orbits in the Hirayama asteroid families to the observed shapes of the IRAS solar system dustbands; and (3) show that there is observational evidence in the IRAS data for the transport of asteroidal particles from the main belt to the Earth by Poynting-Robertson light drag
    • …
    corecore