2,462 research outputs found

    Recent Advances to Estimation of Fixed-Interface Modal Models Using Dynamic Substructuring

    Get PDF
    In 2010, Allen & Mayes proposed to estimate the fixed-interface modes of a structure by measuring the modes of the structure bolted to a fixture and then applying constraints to the fixture using the transmission simulator method. While the method proved useful, and has indeed been used in studies since that point, a few peculiarities were noted. First, in some cases the estimated fixed-base natural frequencies were observed to converge very slowly to the true values (in simulated experiments) as the number of constraints was increased. To formulate these constraints, prior studies used only the free-interface modes of the fixture or the measured modes of the assembly. This work extends that to consider other sets of constraints, showing improved results. Furthermore, in some prior studies it has been observed that there were errors of more than 10% in the natural frequencies even when the fixture motion was hundreds of times smaller than the motion of the structure of interest (and so it had presumably been removed). This work explores this phenomenon, seeking to use the strain energy in the fixture, to the extent that it can be estimated using a test-analysis model for the fixture, as a metric to predict frequency error. The proposed methods are explored by applying them to simulated measurements from a beam and from the NASA Space Launch System coupled to the Mobile Launcher

    Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges

    Get PDF
    This study assesses the physical and chemical characteristics of hyperalkaline steel slag leachate from a former steelworks on two streams in England and their impacts on benthic invertebrate communities. Using multivariate methods (CCA), we related invertebrate richness and diversity with chemical parameters along the environmental gradient from point sources to less impacted sites downstream. Point discharges are characterised by high pH (10.6–11.5), high ionic strength (dominated by Ca–CO₃–OH waters), elevated trace elements (notably Li, Sr and V) and high rates of calcium carbonate precipitation. This combination of stressors gives rise to an impoverished benthic invertebrate community in source areas. The total abundance, taxonomic richness and densities of most observed organisms were strongly negatively correlated with water pH. Analysis using biological pollution monitoring indices (e.g. BMWP and Functional Feeding Groups) shows the system to be highly impacted at source, but when pH approaches values close to aquatic life standards, some 500 m downstream, complex biological communities become established. In addition to showing the rapid recovery of invertebrate communities downstream of the discharges, this study also provides a baseline characterisation of invertebrate communities at the extreme alkaline range of the pH spectrum

    Self-sculpting of a dissolvable body due to gravitational convection

    Get PDF
    © 2018 American Physical Society. Natural sculpting processes such as erosion or dissolution often yield universal shapes that bear no imprint or memory of the initial conditions. Here we conduct laboratory experiments aimed at assessing the shape dynamics and role of memory for the simple case of a dissolvable boundary immersed in a fluid. Though no external flow is imposed, dissolution and consequent density differences lead to gravitational convective flows that in turn strongly affect local dissolving rates and shape changes, and we identify two distinct behaviors. A flat boundary dissolving from its lower surface tends to retain its overall shape (an example of near perfect memory) while bearing small-scale pits that reflect complex near-body flows. A boundary dissolving from its upper surface tends to erase its initial shape and form an upward spike structure that sharpens indefinitely. We propose an explanation for these different outcomes based on observations of the coupled shape dynamics, concentration fields, and flows

    New Method for Phase transitions in diblock copolymers: The Lamellar case

    Full text link
    A new mean-field type theory is proposed to study order-disorder transitions (ODT) in block copolymers. The theory applies to both the weak segregation (WS) and the strong segregation (SS) regimes. A new energy functional is proposed without appealing to the random phase approximation (RPA). We find new terms unaccounted for within RPA. We work out in detail transitions to the lamellar state and compare the method to other existing theories of ODT and numerical simulations. We find good agreements with recent experimental results and predict that the intermediate segregation regime may have more than one scaling behavior.Comment: 23 pages, 8 figure
    • …
    corecore