10,848 research outputs found
Diffusion models for Jupiter's radiation belt
Solutions are given for the diffusion of trapped particles in a planetary magnetic field in which the first and second adiabatic invariants are preserved but the third is not, using as boundary conditions a fixed density at the outer boundary (the magnetopause) and a zero density at an inner boundary (the planetary surface). Losses to an orbiting natural satellite are included and an approximate evaluation is made of the effects of the synchrotron radiation on the energy of relativistic electrons. Choosing parameters appropriate to Jupiter, the electrons required to produce the observed synchrotron radiation are explained. If a speculative mechanism in which the diffusion is driven by ionospheric wind is the true explanation of the electrons producing the synchrotron emission it can be concluded that Jupiter's inner magnetosphere is occupied by an energetic proton flux that would be a serious hazard to spacecraft
Ripples in Tapped or Blown Powder
We observe ripples forming on the surface of a granular powder in a container
submitted from below to a series of brief and distinct shocks. After a few
taps, the pattern turns out to be stable against any further shock of the same
amplitude. We find experimentally that the characteristic wavelength of the
pattern is proportional to the amplitude of the shocks. Starting from
consideration involving Darcy's law for air flow through the porous granulate
and avalanche properties, we build up a semi-quantitative model which fits
satisfactorily the set of experimental observations as well as a couple of
additional experiments.Comment: 7 pages, four postscript figures, submitted PRL 11/19/9
Charge and Spin Density Waves observed through their spatial fluctuations by coherent and simultaneous X-ray diffraction
Spatial uctuations of spin density wave (SDW) and charge density wave (CDW)
in chromium have been compared by combining coherent and simultaneous X-ray
diffraction experiments. Despite their close relationship, spatial fluctuations
of the spin and of the charge density waves display a very different behavior:
the satellite reflection associated to the charge density displays speckles
while the spin one displays an impressive long-range order. This observation is
hardly compatible with the commonly accepted magneto-elastic origin of CDW in
chromium and is more consistent with a purely electronic scenario where CDW is
the second harmonic of SDW. A BCS model taking into account a second order
nesting predicts correctly the existence of a CDW and explains why the CDW is
more sensitive to punctual defects.Comment: 4 pages, 4 figures; Accepted in Phys. Rev.
âFixed-axisâ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?
Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less `fixed' north-northeastâsouth-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the `fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the headâbody axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier suggestion that homing newts use the light-dependent magnetic compass to align a magnetite-based `map detector' when obtaining the precise measurements necessary to derive map information from the magnetic field. However, aligning the putative map detector does not explain the fixed-axis response of newts tested under long-wavelength light. Preliminary evidence suggests that, in the absence of reliable directional information from the magnetic compass (caused by the 90° rotation of the response of the magnetic compass under long-wavelength light), newts may resort to a systematic sampling strategy to identify alignment(s) of the map detector that yields reliable magnetic field measurements
The short and long of it: neural correlates of temporal-order memory for autobiographical events
Previous functional neuroimaging studies of temporal-order memory have investigated memory for laboratory stimuli that are causally unrelated and poor in sensory detail. In contrast, the present functional magnetic resonance imaging (fMRI) study investigated temporal-order memory for autobiographical events that were causally interconnected and rich in sensory detail. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. By manipulating the temporal lag between the two locations in each trial, we compared the neural correlates associated with reconstruction processes, which we hypothesized depended on recollection and contribute mainly to short lags, and distance processes, which we hypothesized to depend on familiarity and contribute mainly to longer lags. Consistent with our hypotheses, parametric fMRI analyses linked shorter lags to activations in regions previously associated with recollection (left prefrontal, parahippocampal, precuneus, and visual cortices), and longer lags with regions previously associated with familiarity (right prefrontal cortex). The hemispheric asymmetry in prefrontal cortex activity fits very well with evidence and theories regarding the contributions of the left versus right prefrontal cortex to memory (recollection vs. familiarity processes) and cognition (systematic vs. heuristic processes). In sum, using a novel photo-paradigm, this study provided the first evidence regarding the neural correlates of temporal-order for autobiographical events
Quantitative stray field imaging of a magnetic vortex core
Thin-film ferromagnetic disks present a vortex spin structure whose dynamics,
added to the small size (~10 nm) of their core, earned them intensive study.
Here we use a scanning nitrogen-vacancy (NV) center microscope to
quantitatively map the stray magnetic field above a 1 micron-diameter disk of
permalloy, unambiguously revealing the vortex core. Analysis of both
probe-to-sample distance and tip motion effects through stroboscopic
measurements, allows us to compare directly our quantitative images to
micromagnetic simulations of an ideal structure. Slight perturbations with
respect to the perfect vortex structure are clearly detected either due to an
applied in-plane magnetic field or imperfections of the magnetic structures.
This work demonstrates the potential of scanning NV microscopy to map tiny
stray field variations from nanostructures, providing a nanoscale,
non-perturbative detection of their magnetic texture.Comment: 5 pages, 4 figure
Surface effects on the Mott-Hubbard transition in archetypal VO
We present an experimental and theoretical study exploring surface effects on
the evolution of the metal-insulator transition in the model Mott-Hubbard
compound Cr-doped VO. We find a microscopic domain formation that is
clearly affected by the surface crystallographic orientation. Using scanning
photoelectron microscopy and X-ray diffraction, we find that surface defects
act as nucleation centers for the formation of domains at the
temperature-induced isostructural transition and favor the formation of
microscopic metallic regions. A density functional theory plus dynamical mean
field theory study of different surface terminations shows that the surface
reconstruction with excess vanadyl cations leads to doped, and hence more
metallic surface states, explaining our experimental observations.Comment: 5 pages, 4 figure
GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter
Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a
large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how
the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings
Skyrmion morphology in ultrathin magnetic films
Nitrogen-vacancy magnetic microscopy is employed in quenching mode as a
non-invasive, high resolution tool to investigate the morphology of isolated
skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to
be strongly affected by local pinning effects and magnetic field history.
Micromagnetic simulations including static disorder, based on a physical model
of grain-to-grain thickness variations, reproduce all experimental observations
and reveal the key role of disorder and magnetic history in the stabilization
of skyrmions in ultrathin magnetic films. This work opens the way to an
in-depth understanding of skyrmion dynamics in real, disordered media.Comment: 9 pages, 8 figures, including supplementary information
- âŠ