1,792 research outputs found

    Minimizing Communication in Linear Algebra

    Full text link
    In 1981 Hong and Kung proved a lower bound on the amount of communication needed to perform dense, matrix-multiplication using the conventional O(n3)O(n^3) algorithm, where the input matrices were too large to fit in the small, fast memory. In 2004 Irony, Toledo and Tiskin gave a new proof of this result and extended it to the parallel case. In both cases the lower bound may be expressed as Ω\Omega(#arithmetic operations / M\sqrt{M}), where M is the size of the fast memory (or local memory in the parallel case). Here we generalize these results to a much wider variety of algorithms, including LU factorization, Cholesky factorization, LDLTLDL^T factorization, QR factorization, algorithms for eigenvalues and singular values, i.e., essentially all direct methods of linear algebra. The proof works for dense or sparse matrices, and for sequential or parallel algorithms. In addition to lower bounds on the amount of data moved (bandwidth) we get lower bounds on the number of messages required to move it (latency). We illustrate how to extend our lower bound technique to compositions of linear algebra operations (like computing powers of a matrix), to decide whether it is enough to call a sequence of simpler optimal algorithms (like matrix multiplication) to minimize communication, or if we can do better. We give examples of both. We also show how to extend our lower bounds to certain graph theoretic problems. We point out recently designed algorithms for dense LU, Cholesky, QR, eigenvalue and the SVD problems that attain these lower bounds; implementations of LU and QR show large speedups over conventional linear algebra algorithms in standard libraries like LAPACK and ScaLAPACK. Many open problems remain.Comment: 27 pages, 2 table

    Existence Theory for the Radically Symmetric Contact Lens Equation

    Get PDF
    In this paper we present a variational formulation of the problem of determining the elastic stresses in a contact lens on an eye and the induced suction pressure distribution in the tear film between the eye and the lens. This complements the force-balance derivation that we used in earlier work [K. L. Maki and D. S. Ross, J. Bio. Sys., 22 (2014), pp. 235–248]. We investigate the existence of solutions of the relevant boundary value problem for the singular, second-order Euler–Lagrange equation. We prove that, for lenses of constant thickness, solutions exist. We present an example to show that in some cases in which the lens thickness increases with distance from the lens center no solution exists

    Experiments reveal enrichment of 11B in granitic melt resulting from tourmaline crystallisation

    Get PDF
    Tourmaline is the most common boron-rich mineral in magmatic systems. In this study, we determined experimentally the fractionation of boron isotopes between granitic melt and tourmaline for the first time. Our crystallisation experiments were performed using a boron-rich granitic glass (B2O3 ≈ 8 wt. %) at 660−800 °C, 300 MPa, and aH2O = 1, in which tourmaline occurs as the only boron-hosting mineral. Our experimental results at four different temperatures show a small and temperature-dependent boron isotope fractionation between granitic melt and tourmaline (Δ11Bmelt–Tur = þ0.90 ± 0.05 ‰ at 660 °C and þ0.23 ± 0.12 ‰ at 800 °C), and the temperature dependence can be defined as Δ11Bmelt–Tur = 4.51 × (1000/T [K]) − 3.94 (R2 = 0.96). Using these boron isotope fractionation factors, tourmaline can serve as a tracer to quantitatively interpret boron isotopic ratios in evolved magmatic systems. Our observation that 11B is enriched in granitic melt relative to tourmaline suggests that the δ11B of late-magmatic tourmaline should be higher than tourmaline that crystallised at an early stage, if B isotope fractionation is not affected by other processes, such as fluid loss. © 2022 The Authors

    Structured matrices, continued fractions, and root localization of polynomials

    Full text link
    We give a detailed account of various connections between several classes of objects: Hankel, Hurwitz, Toeplitz, Vandermonde and other structured matrices, Stietjes and Jacobi-type continued fractions, Cauchy indices, moment problems, total positivity, and root localization of univariate polynomials. Along with a survey of many classical facts, we provide a number of new results.Comment: 79 pages; new material added to the Introductio

    Local asymptotic normality for qubit states

    Full text link
    We consider n identically prepared qubits and study the asymptotic properties of the joint state \rho^{\otimes n}. We show that for all individual states \rho situated in a local neighborhood of size 1/\sqrt{n} of a fixed state \rho^0, the joint state converges to a displaced thermal equilibrium state of a quantum harmonic oscillator. The precise meaning of the convergence is that there exist physical transformations T_{n} (trace preserving quantum channels) which map the qubits states asymptotically close to their corresponding oscillator state, uniformly over all states in the local neighborhood. A few consequences of the main result are derived. We show that the optimal joint measurement in the Bayesian set-up is also optimal within the pointwise approach. Moreover, this measurement converges to the heterodyne measurement which is the optimal joint measurement of position and momentum for the quantum oscillator. A problem of local state discrimination is solved using local asymptotic normality.Comment: 16 pages, 3 figures, published versio

    Enhancement of the Binding Energy of Charged Excitons in Disordered Quantum Wires

    Full text link
    Negatively and positively charged excitons are identified in the spatially-resolved photoluminescence spectra of quantum wires. We demonstrate that charged excitons are weakly localized in disordered quantum wires. As a consequence, the enhancement of the "binding energy" of a charged exciton is caused, for a significant part, by the recoil energy transferred to the remaining charged carrier during its radiative recombination. We discover that the Coulomb correlation energy is not the sole origin of the "binding energy", in contrast to charged excitons confined in quantum dots.Comment: 4 Fig

    Coupled Numerical Analysis of Variations in the Capacity of Driven Energy Piles in Clay

    Get PDF
    Energy piles are an emerging alternative for the reduction of energy consumption to heat and cool buildings. Most of the research to date has focused on thermodynamic properties or axial and radial stress and strain of piles. This paper focuses on the effects of temperature fluctuation on the capacity of driven energy piles in clayey soils. Consolidation of clay surrounding driven piles affects the pile capacity (i.e., set up in clay). The heating and cooling periods of energy piles can create the excess pore-water pressure (EPWP, ue) or relax the existing one (e.g., due to pile driving or previous thermal loads) in clayey soils (due to the contraction and expansion of water) affecting the pile capacity. In the meantime, the thermal expansion and contraction of the pile also generate or relax the EPWP in the soil, which can be computed using the cavity-expansion theory. This paper studies the resulting changes in the pile capacity due to the daily and seasonal thermal cycles. The results show that thermal cycles in an energy pile can cause a decrease in the pile capacity leading to a delay in reaching the capacity after a complete clay set up

    Tensor completion in hierarchical tensor representations

    Full text link
    Compressed sensing extends from the recovery of sparse vectors from undersampled measurements via efficient algorithms to the recovery of matrices of low rank from incomplete information. Here we consider a further extension to the reconstruction of tensors of low multi-linear rank in recently introduced hierarchical tensor formats from a small number of measurements. Hierarchical tensors are a flexible generalization of the well-known Tucker representation, which have the advantage that the number of degrees of freedom of a low rank tensor does not scale exponentially with the order of the tensor. While corresponding tensor decompositions can be computed efficiently via successive applications of (matrix) singular value decompositions, some important properties of the singular value decomposition do not extend from the matrix to the tensor case. This results in major computational and theoretical difficulties in designing and analyzing algorithms for low rank tensor recovery. For instance, a canonical analogue of the tensor nuclear norm is NP-hard to compute in general, which is in stark contrast to the matrix case. In this book chapter we consider versions of iterative hard thresholding schemes adapted to hierarchical tensor formats. A variant builds on methods from Riemannian optimization and uses a retraction mapping from the tangent space of the manifold of low rank tensors back to this manifold. We provide first partial convergence results based on a tensor version of the restricted isometry property (TRIP) of the measurement map. Moreover, an estimate of the number of measurements is provided that ensures the TRIP of a given tensor rank with high probability for Gaussian measurement maps.Comment: revised version, to be published in Compressed Sensing and Its Applications (edited by H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral

    Electron Accumulation and Emergent Magnetism in LaMnO3/SrTiO3 Heterostructures

    Full text link
    Emergent phenomena at polar-nonpolar oxide interfaces have been studied intensely in pursuit of next-generation oxide electronics and spintronics. Here we report the disentanglement of critical thicknesses for electron reconstruction and the emergence of ferromagnetism in polar-mismatched LaMnO3/SrTiO3 (001) heterostructures. Using a combination of element-specific X-ray absorption spectroscopy and dichroism, and first-principles calculations, interfacial electron accumulation and ferromagnetism have been observed within the polar, antiferromagnetic insulator LaMnO3. Our results show that the critical thickness for the onset of electron accumulation is as thin as 2 unit cells (UC), significantly thinner than the observed critical thickness for ferromagnetism of 5 UC. The absence of ferromagnetism below 5 UC is likely induced by electron over-accumulation. In turn, by controlling the doping of the LaMnO3, we are able to neutralize the excessive electrons from the polar mismatch in ultrathin LaMnO3 films and thus enable ferromagnetism in films as thin as 3 UC, extending the limits of our ability to synthesize and tailor emergent phenomena at interfaces and demonstrating manipulation of the electronic and magnetic structures of materials at the shortest length scales.Comment: Accepted by Phys. Rev. Let
    • …
    corecore