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ABSTRACT 

Energy piles are an emerging alternative for the reduction of energy consumption used to heat and 

cool buildings. Most of the research to date has been on thermodynamic properties or axial and 

radial stress and strain of piles. This paper focuses on the temperature-fluctuation effect on the 

capacity of vertically loaded driven energy piles in clayey soils. Consolidation of clay surrounding 

driven piles affects the pile capacity (i.e., set up in clay). The heating and cooling periods of energy 

piles can create the excess pore-water pressure (EPWP, ue) or relax the existing one (e.g., due to 

pile driving or previous thermal loads) in clayey soils (due to the contraction and expansion of 

water) affecting the pile capacity. In the meantime, the thermal expansion and contraction of the 

pile also generate or relax the EPWP in the soil, which can be computed using the cavity-expansion 

theory. This paper studies the resulting changes in the pile capacity due to the daily and seasonal 

thermal cycles. The results show that thermal cycles in an energy pile can cause a decrease in the 

pile capacity leading to a delay in reaching the capacity after a complete clay set up. 

 

INTRODUCTION 

Energy piles are an emerging alternative for the reduction of fossil-fuel energy 

consumption to heat and cool buildings. Energy piles combine ground-sourced heating and cooling 

systems with the building’s foundation. In recent history, heat exchange within the soil had been 

accomplished by horizontal heating and cooling beds, or heat sinks outside of the building 

footprint. The use of ground-source heat pumps (GSHPs) requires additional ground surface 

outside of the building footprint (Brandl, 2006). This requirement eliminates their use in most 

urban settings. While GSHPs require less energy to heat and cool structures, they have not been 

widely used in the United States due to higher installation costs than conventional heating and 

cooling methods (McCartney and Rosenberg, 2011). Energy piles have advantages over separate 

foundation and GSHP systems, including lower installation costs and no requirement for additional 

space. Energy piles serve the dual purpose of supporting the structure and serving as a heat 

exchange medium. Energy piles have been installed in Austria and Switzerland for the last 30 years 

and are gaining popularity in other parts of Europe (Brandl, 2009). Energy piles have not yet been 
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embraced by other developed countries more than the United States, mainly due to insufficient 

research concerning the effects of temperature fluctuation on the stress state of the foundation soils 

(McCartney and Rosenberg, 2011), initial construction cost, and the lack of U.S. requirements to 

utilize green energies in buildings, which is more common in Europe. 

The adverse effect from energy piles may arise from the cyclic thermal loading of soils. In 

other words, the cyclic temperature change results in cyclic loading, which may potentially result 

in a reduction of the pile capacity. The cyclic thermal loading in fine-grained soils can affect the 

shear strength of soil since shear strength can be temperature-dependent. However, in fine-grained 

soils such as clay, in addition to the temperature-dependent shear strength, the thermal cyclic 

loading can cause cyclic variations of the excess pore-water pressure (EPWP, ue). Cyclic variations 

of the EPWP cause cyclic variation of the effective stress, and the shear strength and volume 

changes triggered by the temperature cycles can reach a state of thermo-elasticity after the first 

few cycles. The focus of this paper is on the latter effect. 

 

SCOPE AND METHODOLOGY 

Model 

This paper uses the finite-difference method to analyze the impact of thermal cycles in an 

energy pile located within the clay. A coupled numerical model has been developed using 

principles of three-dimensional (3D, axisymmetric (radial) and vertical) primary consolidation of, 

and heat transfer through, saturated, slightly over-consolidated clay around a driven circular 

energy pile. The driving effect is captured through an increase in excess pore-water pressure (ue) 

and lateral stress modeled using the cavity expansion theory. The increase/decrease of ue due to 

temperature variations in clay and the expansion or contraction of the pile were modeled and 

analyzed. 

 

Modeling Material Properties and Pile Capacity 

The temperature of the soil surface adjacent to the energy pile was varied to simulate 

seasonal heating and cooling demands. For the purpose of this paper, temperature changes adjacent 

to the pile were assumed on the order of 52 C (- 1 C to + 51 C) between peak heating and peak 

cooling temperatures; however, temperature change estimated for energy piles in the U.S. are in 

the ±15°C range (Abdelaziz, 2016). The model simulated the 3D dissipation of the ue through the 

clay surrounding the pile. The resulting temporal variations of the pile capacity due to this cycling 

were computed. Thermal conductivity coefficients and specific heat capacities for the soil matrix 

were estimated using accepted values for soil and water found in the literature (Campanella and 

Mitchell, 1968). Coefficients of thermal expansion for the concrete piles, soil, and water were also 

assigned to the model according to accepted values found in the literature (Campanella and 

Mitchell, 1968). A driven energy pile that was modeled over a 2.5-year period with a constant-

surface-temperature boundary condition and a transient-surface-temperature boundary condition 

assumed to be (𝑇 = 𝑇𝑚𝑒𝑑 + (
𝑇ℎ−𝑇𝑙

2
) ∗ cos [

2𝜋(𝑡−212)

364
] where time, t, is in days.  
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The purpose of the transient-surface temperature iteration is to simulate an energy pile that 

is near an exterior wall that may be subjected to seasonal temperature changes of the ground 

surface. Summary of results and conclusions will be discussed in the following.  

The soil was modeled as a homogeneous layer of anisotropic clay for vertical and radial 

permeabilities. The study consists of three related, but stand-alone, models. Two of the models 

analyze a driven energy pile. One of these models includes transient ground-surface temperatures, 

and one assumes a constant surface soil temperature. Both of these driven-pile models assume the 

pile is driven six months before the HVAC system is turned on.  

The soil was modeled as a saturated, slightly over-consolidated clay of medium to high 

plasticity. The characteristics of the clay were similar to the Illite tested by Campanella and 

Mitchell (1968) as shown in Table 1.  

Table 1. Properties of clay at 20 oC Campanella and Mitchell (1968) 

αs  cp K krr kzz γsat  e0  

3.3 ×10-7 

/°C 

2,462 

J/kg.°C 

.0042 

W/m/oK 

7 ×10-7 

m/s 

4 ×10-7 

m/s 

17 

kN/m3 

1.1  

        

Es Gs  υs su φ’ OCR PL LL 

20 MPa 2.75 0.3 75 kPa 20o 1.1 17 52 

 

where e0 was the initial void ratio; krr is the horizontal (radial) hydraulic conductivity; kzz was the 

vertical hydraulic conductivity; γsat was the void ration was readjusted by the model as a result of 

the cavity expansion due to pile driving and soil expansion and contraction. The saturated unit 

weight were adjusted as the void ratio after the pile was driven or after soil expansion or 

contraction., , but it is Es was the Young’s modulus for the soil;  Gs was the specific gravity of the 

soil,; υ was the Poisson’s ratio of the soil; su was the undrained shear strength of the clayey soil, ; 

φ’ was the angle of effective internal friction of the clay; OCR was the over-consolidation ratio; 

and LL and PL were the liquid and plastic limits respectively. 

K was the heat conductivity coefficient for both vertical and radial directions; αs was the coefficient 

of thermal expansion for the saturated soil 3.3 ×10-7 /°C; cp was the specific heat for the clay, cp, 

is at 20 °C, and the physicochemical coefficient of structural volume change is -0.5 ×10-4 /°C after 

Campanella and Mitchell (1968). 

The thermal expansion of the pile in the radial direction was calculated using the equation 

for the thermal expansion of an area, ∆𝐴 = 2𝛼𝑇𝐴0∆𝑇 where ∆𝐴 is the change in the area, 𝐴0 is the 

original area, 𝛼𝑇  is the coefficient of linear thermal expansion, and ∆𝑇 is the change in 

temperature. The new radius, 𝑅1, may be calculated based on the initial radius, R, as 𝑅1 =
[𝑅2 × (1 + 2𝛼𝑇∆𝑇)]0.5.                             

The coefficient of thermal expansion, αpile, of the concrete for the driven pile was assumed 

14.5 ×10-6 /°C. The Young’s Modulus for the concrete was assumed 25 MN/m2. The coefficient of 
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thermal expansion for water, αH2O, was set to 0.207 ×10-3 /°C. Water density, ρw, is 999.973 kg/m3 

at 4 °C but was continually recalculated based upon the current temperature within the model. 

Dynamic viscosity is the measure of a fluid’s resistance to deformation by shear or tensile stresses.  

The Vogel-Fulcher-Tammann (VFT) model for dynamic viscosity, µ, was used to find 

values for the variation of the dynamic viscosity of water with temperature (Trachenko, 2008). 

The general form of the VFT model is as follows. Abdelaziz (2013) performed a sensitivity 

analysis that showed no significant impact of the minor change in the fluid properties on the 

thermal and mechanical response of energy piles. This is because the temperature range is small 

enough. 

𝜇 = 𝑒(𝐴+
𝐵

𝐶+𝑇
)                                                                   (𝟏) 

where T is the temperature in oK; and coefficients A, B, and C for water were obtained from VFT-

equation viscosity calculator for a variety of fluids. The VFT equation for the dynamic viscosity 

of water, with coefficients, is hence as follows. 

𝜇 = 𝑒
(−3.7188+

578.919

−137.546+𝑇𝑜𝐾)
                                                     (𝟐) 

Because of the hydraulic conductivity changes when the temperature changes, it is adjusted 

continuously within the model as follows. 

𝑘𝑇 = 𝐾
𝛾𝑇

𝜇𝑇
= (𝑘20°𝐶

𝜇20°𝐶

𝛾20°𝐶

)
𝛾𝑇

𝜇𝑇
                                                (𝟑) 

where γ is the unit weight of the permeant fluid (here water), and 𝜇 is the dynamic viscosity of the 

permeant fluid (here water). The subscripts represent the temperature in oC (Holtz et al., 2011). 

Equation (3) inherently assumes that the change in the K depends only on the change of the 

viscosity. In other words, it does not consider changes in the microstructure of the soil (e.g., pore 

sizes and connectivity) 

The coefficient of volumetric compressibility for water, mv, was set at -0.364 ×10-3 m2/kg. The 

coefficient of compressibility was selected so the ue dissipation would complete within 910 days 

such that the clay modeled in this work would have physical characteristics similar to the Illite 

studied Campanella and Mitchell (1968). Consolidation was set to update on a daily basis within 

the model. The initial temperature of the soil was set to 15 °C (288 oK). 

madisonbinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Geo-Congress 2019: Soil Improvement, published by American Society of Civil Engineers. Copyright restrictions may apply. doi: 10.1061/9780784482094.003



 

 5  

 

Figure 1. The layout of the model energy pile and simulated soil in cylindrical coordinates. 

Temperatures fluctuate between - 1 C and + 51 C in the soil adjacent to the energy pile. 

The axisymmetric finite-difference mesh used to model the soil is a rectangular grid of 21 

nodes wide and 31 nodes high, for a total of 651 nodes, as shown in Figure 1. The width of the 

mesh was modeled at approximately 3.33 m (at increments of dr = 0.167 m), and the height of the 

mesh was modeled at 30 m (at increments of dz = 1 m). The driven pile was represented as a 

boundary condition from the top left corner of the mesh to mid-height. The pile was assumed to 

be 15 m long. The boundary condition below the pile to the bottom left corner is soil, assumed to 

be symmetrical to the soil below the pile. The bottom row of the mesh was modeled to be 

impermeable since the modeled soil was clay (and could be modeled symmetrical if the model soil 

were sand). This selection was made based upon the hydraulic conductivity of the soil. The top of 

the mesh was assumed to have a concrete cover or pile cap over the half of the surface near the 

pile. The other half of the top of the mesh was assumed to be exposed to the air.  

The driven-pile model assumes that the structure built upon the energy piles will be built 

and operational, at least from the standpoint of HVAC system operation, exactly six months after 

pile installation. The modeled pile is representative of a typical pile, and no distinction is made 

between an interior pile and exterior (or perimeter) pile, except for the transient ground-surface 

temperature iteration of the model, which may be interpreted for an exterior pile. Consideration of 

the specifics of the construction of the building’s foundation (within the pile) are beyond the scope 

of the model. 

The model establishes a period through the initial six-month period prior to HVAC 

introduction, which allows for dissipation of ue and consolidation of the modeled soil. Both 

versions of the driven-pile model also calculate ue dissipation for a period of two years plus six 

months, or 910 days, without HVAC system introduction, so that consolidation without conduction 

may be compared to consolidation with conduction. 

As the six-month period begins within the time loop, the density and coefficient of thermal 

expansion of the water are calculated based upon the in-situ temperature. Next, the physical state 
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of the soil is changed due to pile driving. The initial void ratio, e0, is recalculated to in-situ values 

using Equation (4) for an element of unit length. In Equation (4), 𝐶𝑐 is the compression index; 𝐾𝑜 

is the at-rest lateral earth-pressure coefficient; and 𝛾𝑠𝑎𝑡 is the initial saturated unit weight.  

𝑒1 = 𝑒0 − 𝐶𝑐[log10(𝐾𝑜 . 𝛾𝑠𝑎𝑡. 𝑧) − log10(𝐾𝑜𝛾𝑠𝑎𝑡. (1))]                              (𝟒) 

The installation of the pile will increase the radial stress based on Equation (5). Equation (5) 

utilizes site-specific factors and restrike data, that is, data obtained from driving the pile 

ssometimesafter driving has initially ceased, whether a few hours or several days. Re-striking is 

performed to either determine the capacity of the pile or to try to obtain additional penetration (Ng 

et al., 2013). 

𝑄

𝑄0
= 𝐴 log10 (

𝑡

𝑡0
) + 1                                                            (𝟓) 

where 𝑄 is the capacity of the pile at time = 𝑡; 𝑄0 is the capacity of the pile at time = 𝑡0, which is 

the time at which the dissipation of ue becomes linear with the log of time (Steward and Wang, 

2011). The setup factor, A, is dimensionless and varies depending on soil conditions and the type 

of the pile (Steward and Wang, 2011). The setup factor can range from 0.2 to greater than 1, where 

A = 0.6 is typically used for clay, and 𝑡0 is typically valued at one day (Yang and Liang, 2006). 

However, the Skov and Denver equation is not used to predict ultimate pile capacity. The Skov 

and Denver equation assumes a linear increase in pile capacity, and since pile capacity does not 

increase to infinity, it is only valid for a limited time after pile installation (Wang et al., 2010). 

 As seen in the flowchart of Figure 2, a subroutine within the code recalculates the void 

ratio within the plastic zone based upon the increase in the stress. Once the void ratio and porosity 

are recalculated, 𝛾𝑠𝑎𝑡 is also recalculated. After the density of water is calculated based upon the 

temperature, its dynamic viscosity is calculated according to Equation (2), and the absolute 

hydraulic conductivity is calculated according to Equation (3). Therefore, Darcy’s assumptions 

were violated so that the changes in the permeability due to temperature changes could be 

examined in the model.  The next values to be calculated by the model were the radial and vertical 

coefficients of consolidation, crr and czz, respectively. This calculation was performed using 

Equation (6), and the unit of crr was converted to days. 

𝑐𝑟𝑟 =
𝑘𝑟𝑟(86,400 𝑠𝑒𝑐/𝑑𝑎𝑦)

𝑚𝑣𝜌𝑤𝑔
                                                                    (𝟔)  

The ue is then calculated. The boundary condition along the pile face is calculated using the 

logarithmic decay of Equation (7) fitted to Bograd & Matlock (1996) and Banerjee (1978) models 

(Mirza, 2000). Once the value of ue in Equation (7) reaches zero, the model limits the value of this 

boundary ue to zero for cavity expansion. 

𝑢𝑒 = 4.5 ∙ 𝑐𝑢 [1 −
ln (

𝑐𝑟𝑡
𝑅2 )

6
]                                                        (𝟕) 

where t is time; and R is the lateral drainage path. Finally, the unit skin-friction resistance is calculated 

according to Equation (8). 
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𝑓𝑠 = 𝛽𝜎𝑧
′                                                                          (𝟖)  

where 𝛽 = 𝐾0 (
𝐾

𝐾0
) tan [𝜑′ (

𝛿

𝜑′)] where 𝜑′ is the effective stress friction angle, and δ is the soil-

foundation friction angle. The effective vertical stress, 𝜎𝑧
′, is calculated for each one-meter 

thickness of soil using Equation (9). In Equation (9), for the calculation of unit friction for a 1m 

thick slice of soil at a depth of x m to a depth of (x+1) m, the value of the effective vertical stress 

is the overburden due to the above (x) m plus the effective vertical stress at the midpoint between 

(x) m and (x+1) m. 

𝜎𝑧
′ = 𝛾𝑠𝑎𝑡 ∙ (𝑧 − 1) + 0.5(𝛾𝑠𝑎𝑡 − 𝜌𝑤 ∙ 𝑔)                                            (𝟗)  

where  

𝐾0 = (1 − sin 𝜑′)𝑂𝐶𝑅sin 𝜑′
                                                       (𝟏𝟎) 

where   

K = 1.5 ∙ 𝐾0                                                                     (𝟏𝟏) 

(
𝐾

𝐾0
) values for a large displacement, driven pile range from 1.0 to 2.0 (Coduto, 2001). Values for 

the (
𝛿′

𝜑′) ratio are given at 0.8 to 1.0 for smooth concrete, such as the one seen in a precast pile, 

and 1.0 for rough concrete (Coduto, 2001). In the model, (
𝐾

𝐾0
) is calculated using Equations (10) 

and (11), where 𝜑′ is 20°. The ratio (
𝛿′

𝜑′) is assumed to be equal to 0.8 in the model. Unit-

circumference-friction is calculated using a ratio of ue to initial ue0, with the assumption that ue0 at 

Day 1 is equal to 1.25 times the deviator stress, 𝛿𝜎𝑟 , as shown in Equation (12). The unit friction 

calculated using Equation (8) equals the friction along a unit length of the pile. Because the model 

calculates friction along the entire effective length of the pile, the frictional capacity calculation 

only requires multiplying the results by the perimeter of the pile. Therefore, the friction value 

computed by the model will, here on, be referred to as the unit-circumference friction value. 

𝑓 = (∑ 𝐾0∙𝜎𝑧(𝑖𝑖)
′ ∙

𝐾

𝐾0
∙ tan [𝜑′ (

𝛿

𝜑′
)]) ∗ {0.2 + 0.8 [1 − (

𝑢𝑒(𝑖𝑖)

(
𝛿𝜎𝑟

0.8)
)]}                   (𝟏𝟐) 

After the six-month construction period, all three versions of the model loop through two 

years of simulated seasonal heating and cooling cycles. The heating and cooling cycles are cyclical 

in nature and separated into thirteen-week seasons. The details of this portion of the model are 

presented below in Figure 2. 

madisonbinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Geo-Congress 2019: Soil Improvement, published by American Society of Civil Engineers. Copyright restrictions may apply. doi: 10.1061/9780784482094.003



 

 8  

 

Figure 2. The process followed by the model for the driven-pile iterations. 

After the initial six months, the ue values are augmented by heat generated from the HVAC 

system. The HVAC system begins adding heat at the pile surface on the first day of summer. 

Heating of the energy pile through the convection of the heat carrying fluid within the pile, as 

described by Brandl (2009), is beyond the scope of this paper. Researchers such as Laloui et al. 

(2006) and Brandl (2009) present heating and cooling cycles that reach their maximum differential 

in a matter of days. The heat energy was added to and removed from the soil gradually in this 

model. In order to keep the quantity of heat added to the soil out of the model, a method of 

representing the gradual change in heat energy was devised. This gradual change in heat energy 

introduced or removed from the soil is represented in a gradual change in surface temperature of 

the soil adjacent to the energy pile. In addition, the gradual nature of the temperature change along 

the pile is meant to simulate the change in demand of the occupants of the theoretical building on 

the HVAC system throughout the calendar year. In the model, the highest demand on the cooling 

system would occur when the outside temperature was hottest. This time period is modeled to be 

in the middle of the summer season. Cooling of the building would pull heat from the occupied 

space and transfer that heat into the soil via the energy piles. This would then heat the soil. 

Conversely, the highest demand for heat would occur in the middle of the winter season, requiring 

the greatest amount of heat to be removed from the soil. The change between the demand for 

cooling and heating the building occurs gradually and linearly, with a week in the middle of 

autumn and another in the middle of spring where neither heating nor cooling is required for the 

building. The seasons are simulated as shown in Figure 3. Abdelaziz et al. (2014) present a detailed 

analysis to form an ideal thermal cycle to model GSHP systems. 

The total number of heating hours was calculated and then proportioned so that it could be 

distributed as shown in Figure 3. The total range of temperature that the soil would see was decided 

upon prior to the creation of the model. The energy pile’s face reaches a maximum temperature of 

slightly more than 50 °C and a minimum temperature of slightly less than 0°C. The number of 

hours of heating was calculated using the method described above. The total number of heating 

hours was calculated to be 1,344 heating hours. 
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Figure 3. A chart modeling the seasonal heating and cooling demand used to model 

temperature change for the temperature boundary condition along the pile. 

When heat is added to the energy pile, the pile undergoes volumetric strain. However, the 

vertical dimension may be ignored in order to find the effect the thermal expansion has upon the 

horizontal cross-sectional area of the pile and pile radius. The increase in the pile radius may result 

in increased total stress on the soil, in the form of increased ue; the exception is the case of normally 

consolidated (NC) or slightly over-consolidated (OC) clays where the heating may cause thermal 

contraction of clay. The change in temperature between the in-situ temperature and the maximum 

soil temperature is 35°C. Using the modulus of elasticity and coefficient of thermal expansion for 

concrete presented above and Equation (13), the pile radius will expand 0.000076105 m during a 

change in temperature of 35°C. Using Equation (13) for a linear, compressive stress-strain 

relationship and assuming that since the stiffness of the concrete is much greater than that of the 

clay, the entirety of the strain from the thermal expansion of the energy pile is assumed to be 

transferred to the clay. The strain, ε, caused by the thermal expansion of the energy pile, 

represented by the right-hand side of Equation (13), is equal to the strain due to the linear 

compression of the clay, represented by 
𝜎

𝐸𝑠
 in Equation (13). This assumes that first, the clay does 

not undergo any volume change due to heating, and the confining around the pile does not 

constrain the radial expansion of the pile, which may not be true in the case of NC or slightly OC 

clays where thermal contraction occurs. 

휀 =
𝜎𝑅𝑐𝑙𝑎𝑦

𝐸𝑠
= 𝑅𝑝𝑖𝑙𝑒𝛼𝑐∆𝑇                                                             (𝟏𝟑)  

where it is assumed that the radius of the energy pile, Rpile, is equal to the length of clay being 

compressed, 𝑅𝑐𝑙𝑎𝑦. Assuming that the stress created by the thermal expansion of the energy pile is 

then equal to the strain multiplied by the modulus of elasticity of the clay, and that also assuming 

madisonbinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Geo-Congress 2019: Soil Improvement, published by American Society of Civil Engineers. Copyright restrictions may apply. doi: 10.1061/9780784482094.003



 

 10  

that the stress, 𝜎, is equal to an increase in the ue, the ue created by a temperature increase of 1 °C 

is calculated using Equation (14). 

𝑢ℎ𝑒𝑎𝑡 =
휀𝐸𝑠

∆𝑇
=

(7.6105 × 10−5)20,000 𝑘𝑁/𝑚2

35℃
= 0.0435 

𝑘𝑁

𝑚2 ∙ ℃
                     (𝟏𝟒) 

At this point in the model, the 182-day “construction phase” is over, and the model starts 

calculating the temperature change to the pile-soil boundary.  

The value of uheat in Equation (14) is multiplied by the change in the temperature calculated 

for that day to obtain the amount of the ue caused by the thermal expansion of the pile. This 

temperature change is added to the previous temperature, and the density and coefficient of thermal 

expansion values of water are then recalculated. At this point, the model starts to account for the 

changes to the soil characteristics caused by the change in the temperature that was not required 

during the “construction phase” because the temperature was constant. The model then recalculates 

the minor changes in the density of the soil, ρclay, and ρsatclay. The specific heat is, thereafter, 

recalculated. The incremental temperature added to the previous day’s temperature is then 

removed because the temperature is added to the previous day’s temperature value in the part of 

the model that calculates conduction as a boundary condition along the pile face. This was 

necessary to prevent the change in temperature from being counted twice. Next, the ue caused by 

thermal expansion of the soil is calculated. The values of the dynamic viscosity and thermal 

expansion of water are then calculated, which are in turn used to calculate the hydraulic 

conductivity and coefficient of consolidation. The ue is thus calculated for the day, and then the 

values of the ue caused by thermal expansion of the pile and thermal expansion of the soil are 

added. This totals the ue value for the day. The unit-circumference skin friction is then calculated 

and recorded, and the time value advances afterward.  

 

SUMMARY OF RESULTS 

Figures 4 and 5 present the ue data along the pile face at various depths. Figure 4 shows that the ue 

at various depths experiences an initial rise in the value of approximately 14% immediately after 

pile installation. During this period, ue values increase before consolidation begins—a dilatory 

response of the soil that is similar to that described in Burns and Mayne (1999). The ue decreases 

more rapidly around Day 200. This coincides with the beginning of soil heating. The increased 

soil temperature increases the hydraulic conductivity of the soil. Another reason for this can be the 

thermally-induced water flow since water flows from hot to cold regions. To examine the 

contribution of this, the change in PWP at points at a distance from the energy piles need to be 

examined. 

There is a small schematic image of the model to the left of each figure with a thick solid 

line marking the locations for which the results in the figure are shown. With the exception of the 

15m case, other depths roughly coincide. 
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Figure 4. Excess pore-water pressure (EPWP, ue) at the pile surface at various depths, from 

the time of pile installation to the end of the model run. The ground-surface temperature is 

a constant 15 °C. 

On Day 402, and peaking on Day 497, the ue increases 67 kN/m2. This increase coincides 

with soil cooling during the winter season. There is another smaller increase in the ue toward the 

end of Year 2. Figure 4 also shows that ue values are almost equal along the pile face, with the 

exception of the 15m depth. This difference is likely due to the proximity of soil that has not 

undergone deformation due to cavity expansion within the assumptions of the model. In Figure 5 

(the more realistic case with a transient ground-surface temperature), the influence of the ground-

surface temperature has caused greater separation of the ue values at the 3m depth from the values 

at the other depths. 
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Figure 5. EPWP, ue, at the pile surface at various depths.1, from the time of pile installation 

to the end of the model run, with transient ground-surface temperatures. 

Results are available for other parameters at other locations at the same series of depths, which 

show more variations along the depth. However, those do not fit within the scope and limits of 

this paper.  

The unit-circumference friction values are presented in Figures 6 and 7. Friction values 

drop after Day 1 until approximately Day 10, then rise until approximately Day 400, and thereafter 

decrease due to the increased ue. The initial decreased friction values coincide with the period of 

dilation in the soil, where the ue values rise for a period of time before decreasing. Friction values 

drop slightly again due to soil heating during the spring of Year 2. Unit-circumference-friction 

values are slightly higher in Figure 7 due to higher ground-surface temperatures. Although the 

friction capacity continues to increase until the end of the model run, the recommended unit-radius 

friction value is the value observed at the local minimum caused by soil cooling near the end of 

the first year of HVAC usage.  

 

Figure 6. Unit-circumference-friction values from the time of pile installation to the end of 

the model run. The ground-surface temperature is a constant 15 °C. 
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Figure 7. Unit-circumference-friction values from the time of pile installation to the end of 

the model run, with transient ground-surface temperatures. 

 

CONCLUSION 

The purpose of this paper was to understand the soil-pile interaction of energy piles and to 

model the effects of temperature fluctuation on the capacity of a driven energy pile in clayey soils. 

The involved physical processes include the consolidation of clay around energy piles as well as 

conduction through the saturated clay soil. The consolidation of clay (due to the drainage of the 

excess pore-water pressure, ue, in clay) surrounding the energy pile affects the capacity of the pile 

(i.e., pile setup in clay). This work simulates how temperature fluctuations within the soil 

surrounding the energy pile and fluctuations of the ground-surface temperature affect the drainage 

of ue and thus the capacity of the energy pile.  

The change in the ue due to the thermal expansion and contraction of the energy pile and 

thermal expansion and contraction of the soil matrix was included in the model as well as the 

dissipation of the ue generated by cavity expansion during pile driving.  

The model analyzed the effect that variable temperatures had on the capacity of driven 

energy piles. The temperatures of both the soil at the surface of the pile and the ground surface 

were varied sinusoidally to simulate seasonal demands on the energy pile and seasonal temperature 

changes, respectively. 

The model assumed that the pile was driven on the first day of winter and the energy pile 

began operation on the first day of summer. The ue dissipated at an increased rate during the period 

of time when the soil was heating. If the model conditions were flipped, i.e., the energy pile was 

constructed on the first day of summer and operational on the first day of winter, the ue values 

would dissipate more slowly, likely leading to a longer period of consolidation and pile setup. 
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The influence of cyclical surface temperatures was observed in the results of the model. 

The offset in the cyclical surface-temperature equation placed the highest surface temperature in 

the middle of the summer, thus exaggerating the influence higher temperatures have on increasing 

consolidation rates because additional heat is present at the surface and is being conducted down 

into the soil at the same time the soil is heating due to HVAC usage. Consolidation rates would 

likely decrease more slowly if surface soil temperatures peaked during the period prior to operation 

of the energy pile and during the period of soil cooling. 

The unit-circumference-friction values computed by the model were calculated where the 

effective vertical stress was calculated along the depth. The unit-circumference-frictional values 

computed in the model shown to lead to allowable side-friction-capacity values that were similar 

in value to the allowable capacities that were calculated, where the effective vertical stress was 

calculated as a single full-depth clay layer.  
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