1,556 research outputs found

    Evidence for Superfluidity in a Resonantly Interacting Fermi Gas

    Full text link
    We observe collective oscillations of a trapped, degenerate Fermi gas of 6^6Li atoms at a magnetic field just above a Feshbach resonance, where the two-body physics does not support a bound state. The gas exhibits a radial breathing mode at a frequency of 2837(05) Hz, in excellent agreement with the frequency of νH≡10νxνy/3=2830(20)\nu_H\equiv\sqrt{10\nu_x\nu_y/3}=2830(20) Hz predicted for a {\em hydrodynamic} Fermi gas with unitarity limited interactions. The measured damping times and frequencies are inconsistent with predictions for both the collisionless mean field regime and for collisional hydrodynamics. These observations provide the first evidence for superfluid hydrodynamics in a resonantly interacting Fermi gas.Comment: 5 pages, ReVTeX4, 2 eps figs. Resubmitted to PRL in response to referees' comments. Title and abstract changed. Corrected error in Table 1, atom numbers for 0.33 TF and 0.5 TF data were interchanged. Corrected typo in ref 3. Added new figure of damping time versus temperatur

    Universal Approach to Optimal Photon Storage in Atomic Media

    Full text link
    We present a universal physical picture for describing storage and retrieval of photon wave packets in a Lambda-type atomic medium. This physical picture encompasses a variety of different approaches to pulse storage ranging from adiabatic reduction of the photon group velocity and pulse-propagation control via off-resonant Raman fields to photon-echo based techniques. Furthermore, we derive an optimal control strategy for storage and retrieval of a photon wave packet of any given shape. All these approaches, when optimized, yield identical maximum efficiencies, which only depend on the optical depth of the medium.Comment: 4 pages, 3 figures. V2: major changes in presentation (title, abstract, main text), simplification of derivations, new references. V3: minor changes - final version as published in Phys. Rev. Let

    Optical quenching and recovery of photoconductivity in single-crystal diamond

    Full text link
    We study the photocurrent induced by pulsed-light illumination (pulse duration is several nanoseconds) of single-crystal diamond containing nitrogen impurities. Application of additional continuous-wave light of the same wavelength quenches pulsed photocurrent. Characterization of the optically quenched photocurrent and its recovery is important for the development of diamond based electronics and sensing

    High flux table-top soft X-ray source driven by sub-2-cycle, CEP stable, 1.85 μm 1 kHz pulses for carbon K-edge spectroscopy

    Get PDF
    We report on the first table-top high flux source of coherent soft X-ray radiation up to 400 eV, operating at 1 kHz. This source covers the carbon K-edge with a beam brilliance of (4.3 ± 1.2) × 1015 photons/s/mm2/strad/10% bandwidth and a photon flux of (1.9 ± 0.1) × 107 photons/s/1% bandwidth. We use this source to demonstrate table-top X-ray near edge fine structure spectroscopy at the carbon K-edge of a polyimide foil and retrieve the specific absorption features corresponding to the binding orbitals of the carbon atoms in the foil.Peer ReviewedPostprint (author's final draft

    Optimal control of light pulse storage and retrieval

    Get PDF
    We demonstrate experimentally a procedure to obtain the maximum efficiency for the storage and retrieval of light pulses in atomic media. The procedure uses time reversal to obtain optimal input signal pulse-shapes. Experimental results in warm Rb vapor are in good agreement with theoretical predictions and demonstrate a substantial improvement of efficiency. This optimization procedure is applicable to a wide range of systems.Comment: 5 pages, 4 figure

    Burst avalanches in solvable models of fibrous materials

    Full text link
    We review limiting models for fracture in bundles of fibers, with statistically distributed thresholds for breakdown of individual fibers. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, and the distribution D(Δ)D(\Delta) of the magnitude Δ\Delta of such avalanches is the central characteristics in our analysis. For a bundle of parallel fibers two limiting models of load sharing are studied and contrasted: the global model in which the load carried by a bursting fiber is equally distributed among the surviving members, and the local model in which the nearest surviving neighbors take up the load. For the global model we investigate in particular the conditions on the threshold distribution which would lead to anomalous behavior, i.e. deviations from the asymptotics D(Δ)∼Δ−5/2D(\Delta) \sim \Delta^{-5/2}, known to be the generic behavior. For the local model no universal power-law asymptotics exists, but we show for a particular threshold distribution how the avalanche distribution can nevertheless be explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure

    Phase transition in the modified fiber bundle model

    Full text link
    We extend the standard fiber bundle model (FBM) with the local load sharing in such a way that the conservation of the total load is relaxed when an isolated fiber is broken. In this modified FBM in one dimension (1D), it is revealed that the model exhibits a well-defined phase transition at a finite nonzero value of the load, which is in contrast to the standard 1D FBM. The modified FBM defined in the Watts-Strogatz network is also investigated, and found is the existences of two distinct transitions: one discontinuous and the other continuous. The effects of the long-range shortcuts are also discussed.Comment: 7 pages, to appear in Europhys. Let
    • …
    corecore