6,204 research outputs found
Theory of the Ramsey spectroscopy and anomalous segregation in ultra-cold rubidium
The recent anomalous segregation experiment of Lewandowski et al. (PRL, 88,
070403, 2002) shows dramatic, rapid internal state segregation for two
hyperfine levels of rubidium. We simulate an effective one dimensional model of
the system for experimental parameters and find reasonable agreement with the
data. The Ramsey frequency is found to be insensitive to the decoherence of the
superposition, and is only equivalent to the interaction energy shift for a
pure superposition. A Quantum Boltzmann equation describing collisions is
derived using Quantum Kinetic Theory, taking into account the different
scattering lengths of the internal states. As spin-wave experiments are likely
to be attempted at lower temperatures we examine the effect of degeneracy on
decoherence by considering the recent experiment of Lewandowski et al. where
degeneracy is around 10%. We also find that the segregation effect is only
possible when transport terms are included in the equations of motion, and that
the interactions only directly alter the momentum distributions of the states.
The segregation or spin wave effect is thus entirely due to coherent atomic
motion as foreseen in the experimental reportComment: 26 pages, 4 figures, to be published in J. Phys.
Quadripartite continuous-variable entanglement via quadruply concurrent downconversion
We investigate an intra-cavity coupled down-conversion scheme to generate
quadripartite entanglement using concurrently resonant nonlinearities. We
verify that quadripartite entanglement is present in this system by calculating
the output fluctuation spectra and then considering violations of optimized
inequalities of the van Loock-Furusawa type. The entanglement characteristics
both above and below the oscillation threshold are considered. We also present
analytic solutions for the quadrature operators and the van Loock-Furusawa
correlations in the undepleted pump approximation.Comment: 9 pages, 5 figure
Quantifying the Drivers of Star Formation on Galactic Scales. I. The Small Magellanic Cloud
We use the star formation history of the Small Magellanic Cloud (SMC) to
place quantitative limits on the effect of tidal interactions and gas infall on
the star formation and chemical enrichment history of the SMC. The coincident
timing of two recent (< 4 Gyr) increases in the star formation rate and
SMC/Milky Way(MW) pericenter passages suggests that global star formation in
the SMC is driven at least in part by tidal forces due to the MW. The Large
Magellanic Cloud (LMC) is the other potential driver of star formation, but is
only near the SMC during the most recent burst. The poorly constrained LMC-SMC
orbit is our principal uncertainty. To explore the correspondence between
bursts and MW pericenter passages further, we model star formation in the SMC
using a combination of continuous and tidally-triggered star formation. The
behavior of the tidally-triggered mode is a strong inverse function of the
SMC-MW separation (preferred behavior ~ r^-5, resulting in a factor of ~100
difference in the rate of tidally-triggered star formation at pericenter and
apocenter). Despite the success of these closed-box evolutionary models in
reproducing the recent SMC star formation history and current chemical
abundance, they have some systematic shortcomings that are remedied by
postulating that a sizable infall event (~ 50% of the total gas mass) occured
about 4 Gyr ago. Regardless of whether this infall event is included, the
fraction of stars in the SMC that formed via a tidally triggered mode is > 10%
and could be as large as 70%.Comment: Accepted for publication in Ap
Spectral Analysis of a Four Mode Cluster State
We theoretically evaluate the squeezed joint operators produced in a single
optical parametric oscillator which generates quadripartite entangled outputs,
as demonstrated experimentally by Pysher et al. \cite{pysher}[Phys. Rev. Lett.
107, 030505 (2011)]. Using a linearized fluctuation analysis we calculate the
squeezing of the joint quadrature operators below threshold for a range of
local oscillator phases and frequencies. These results add to the existing
theoretical understanding of this potentially important system.Comment: 4 pages, 6 figure
The dynamics of loop formation in a semiflexible polymer
The dynamics of loop formation by linear polymer chains has been a topic of
several theoretical/experimental studies. Formation of loops and their opening
are key processes in many important biological processes. Loop formation in
flexible chains has been extensively studied by many groups. However, in the
more realistic case of semiflexible polymers, not much results are available.
In a recent study (K. P. Santo and K. L. Sebastian, Phys. Rev. E, \textbf{73},
031293 (2006)), we investigated opening dynamics of semiflexible loops in the
short chain limit and presented results for opening rates as a function of the
length of the chain. We presented an approximate model for a semiflexible
polymer in the rod limit, based on a semiclassical expansion of the bending
energy of the chain. The model provided an easy way to describe the dynamics.
In this paper, using this model, we investigate the reverse process, i.e., the
loop formation dynamics of a semiflexible polymer chain by describing the
process as a diffusion-controlled reaction. We perform a detailed
multidimensional analysis of the problem and calculate closing times for a
semiflexible chain which leads to results that are physically expected. Such a
multidimensional analysis leading to these results does not seem to exist in
the literature so far.Comment: 37 pages 4 figure
Anharmonic effects on a phonon number measurement of a quantum mesoscopic mechanical oscillator
We generalize a proposal for detecting single phonon transitions in a single
nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of
each mechanical oscillator. In this scheme two NEMS oscillators are coupled via
a term quadratic in the amplitude of oscillation for each oscillator. One NEMS
oscillator is driven and strongly damped and becomes a transducer for phonon
number in the other measured oscillator. We derive the conditions for this
measurement scheme to be quantum limited and find a condition on the size of
the anharmonicity. We also derive the relation between the phase diffusion
back-action noise due to number measurement and the localization time for the
measured system to enter a phonon number eigenstate. We relate both these time
scales to the strength of the measured signal, which is an induced current
proportional to the position of the readout oscillator.Comment: 13 pages, 2 figure
Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator
We examine the feasibility of generating continuous-variable multipartite
entanglement in an intra-cavity quadruply concurrent downconversion scheme that
has been proposed for the generation of cluster states by Menicucci \textit{et
al.} [Physical Review Letters \textbf{101}, 130501 (2008)]. By calculating
optimized versions of the van Loock-Furusawa correlations we demonstrate
genuine quadripartite entanglement and investigate the degree of entanglement
present. Above the oscillation threshold the basic cluster state geometry under
consideration suffers from phase diffusion. We alleviate this problem by
incorporating a small injected signal into our analysis. Finally, we
investigate squeezed joint operators. While the squeezed joint operators
approach zero in the undepleted regime, we find that this is not the case when
we consider the full interaction Hamiltonian and the presence of a cavity. In
fact, we find that the decay of these operators is minimal in a cavity, and
even depletion alone inhibits cluster state formation.Comment: 26 pages, 12 figure
Three-body recombination of ultracold Bose gases using the truncated Wigner method
We apply the truncated Wigner method to the process of three-body
recombination in ultracold Bose gases. We find that within the validity regime
of the Wigner truncation for two-body scattering, three-body recombination can
be treated using a set of coupled stochastic differential equations that
include diffusion terms, and can be simulated using known numerical methods. As
an example we investigate the behaviour of a simple homogeneous Bose gas.Comment: Replaced paper same as original; correction to author list on
cond-mat mad
Robust entanglement of a micromechanical resonator with output optical fields
We perform an analysis of the optomechanical entanglement between the
experimentally detectable output field of an optical cavity and a vibrating
cavity end-mirror. We show that by a proper choice of the readout (mainly by a
proper choice of detection bandwidth) one can not only detect the already
predicted intracavity entanglement but also optimize and increase it. This
entanglement is explained as being generated by a scattering process owing to
which strong quantum correlations between the mirror and the optical Stokes
sideband are created. All-optical entanglement between scattered sidebands is
also predicted and it is shown that the mechanical resonator and the two
sideband modes form a fully tripartite-entangled system capable of providing
practicable and robust solutions for continuous variable quantum communication
protocols
Bose-Einstein Condensation from a Rotating Thermal Cloud: Vortex Nucleation and Lattice Formation
We develop a stochastic Gross-Pitaveskii theory suitable for the study of
Bose-Einstein condensation in a {\em rotating} dilute Bose gas. The theory is
used to model the dynamical and equilibrium properties of a rapidly rotating
Bose gas quenched through the critical point for condensation, as in the
experiment of Haljan et al. [Phys. Rev. Lett., 87, 21043 (2001)]. In contrast
to stirring a vortex-free condensate, where topological constraints require
that vortices enter from the edge of the condensate, we find that phase defects
in the initial non-condensed cloud are trapped en masse in the emerging
condensate. Bose-stimulated condensate growth proceeds into a disordered vortex
configuration. At sufficiently low temperature the vortices then order into a
regular Abrikosov lattice in thermal equilibrium with the rotating cloud. We
calculate the effect of thermal fluctuations on vortex ordering in the final
gas at different temperatures, and find that the BEC transition is accompanied
by lattice melting associated with diminishing long range correlations between
vortices across the system.Comment: 15 pages, 12 figure
- …