51 research outputs found

    Protein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines

    Get PDF
    Temozolomide (TMZ) is the standard chemotherapeutic agent for human malignant glioma, but intrinsic or acquired chemoresistance represents a major obstacle to successful treatment of this highly lethal group of tumours. Obtaining better understanding of the molecular mechanisms underlying TMZ resistance in malignant glioma is important for the development of better treatment strategies. We have successfully established a passage control line (D54-C10) and resistant variants (D54-P5 and D54-P10) from the parental TMZ-sensitive malignant glioma cell line D54-C0. The resistant sub-cell lines showed alterations in cell morphology, enhanced cell adhesion, increased migration capacities, and cell cycle arrests. Proteomic analysis identified a set of proteins that showed gradual changes in expression according to their 50% inhibitory concentration (IC50). Successful validation was provided by transcript profiling in another malignant glioma cell line U87-MG and its resistant counterparts. Moreover, three of the identified proteins (vimentin, cathepsin D and prolyl 4-hydroxylase, beta polypeptide) were confirmed to be upregulated in high-grade glioma. Our data suggest that acquired TMZ resistance in human malignant glioma is associated with promotion of malignant phenotypes, and our reported molecular candidates may serve not only as markers of chemoresistance but also as potential therapeutic targets in the treatment of TMZ-resistant human malignant glioma, providing a platform for future investigations

    Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of microRNAs

    Get PDF
    It is emerging that nanotopographical information can be used to induce osteogenesis from mesenchymal stromal cells from the bone marrow and it is hoped that this nanoscale bioactivity can be utilized to engineer next generation implants. However, the osteogenic mechanism of surfaces is currently poorly understood. In this report, we investigate mechanism and implicate bone morphogenic protein (BMP) in up-regulation of RUNX2 and show that RUNX2 and its regulatory miRNAs are BMP sensitive. Our data demonstrates that osteogenic nanotopography promotes co-localization of intergrins and BMP2 receptors in order to enhance osteogenic activity and that vitronectin is important in this interface. This provides insight that topographical regulation of adhesion can have effects on signaling cascades outside of cytoskeletal signaling and that adhesions can have roles in augmenting BMP signaling

    Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates

    Get PDF
    While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair

    Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration

    No full text
    During forelimb regeneration in the newt Notophthalmus viridescens, the dynamic expression of a transitional matrix rich in hyaluronic acid, tenascin-C, and fibronectin controls muscle cell behavior in vivo and in vitro. However, the influence of extracellular matrix (ECM) remodeling on tissue stiffness and the cellular response to mechanical variations during regeneration was unknown. By measuring the transverse stiffness of tissues in situ, we found undifferentiated regenerative blastemas were less stiff than differentiated stump muscle (13.3±1.6 vs. 16.6±1.2 kPa). To directly determine how ECM and stiffness combine to affect skeletal muscle fragmentation, migration, and fusion, we coated silicone-based substrates ranging from 2 to 100 kPa with matrices representative of transitional (tenascin-C and fibronectin) and differentiated environments (laminin and Matrigel). Using live-cell imaging, we found softer tenascin-C-coated substrates significantly enhanced migration and fragmentation of primary newt muscle cells. In contrast, stiffer substrates coated with laminin, Matrigel, or fibronectin increased differentiation while suppressing migration and fragmentation. These data support our in vivo observations that a transitional matrix of reduced stiffness regulates muscle plasticity and progenitor cell recruitment into the regenerative blastema. These new findings will enable the determination of how biochemical and mechanical cues from the ECM control genetic pathways that drive regeneration.—Calve, S., Simon, H.-G. Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration
    corecore